Intelligent Systems: Approximation by Artificial Neural Networks

This brief monograph is the first one to deal exclusively with the quantitative approximation by artificial neural networks to the identity-unit operator. Here we study with rates the approximation properties of the "right" sigmoidal and hyperbolic tangent artificial neural network positiv...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Anastassiou, George A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Intelligent Systems Reference Library, 19
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03368nam a22004935i 4500
001 978-3-642-21431-8
003 DE-He213
005 20151204150051.0
007 cr nn 008mamaa
008 110713s2011 gw | s |||| 0|eng d
020 |a 9783642214318  |9 978-3-642-21431-8 
024 7 |a 10.1007/978-3-642-21431-8  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Anastassiou, George A.  |e author. 
245 1 0 |a Intelligent Systems: Approximation by Artificial Neural Networks  |h [electronic resource] /  |c by George A. Anastassiou. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a VIII, 108 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 19 
505 0 |a Univariate sigmoidal neural network quantitative approximation -- Univariate hyperbolic tangent neural network quantitative approximation -- Multivariate sigmoidal neural network quantitative approximation -- Multivariate hyperbolic tangent neural network quantitative approximation. 
520 |a This brief monograph is the first one to deal exclusively with the quantitative approximation by artificial neural networks to the identity-unit operator. Here we study with rates the approximation properties of the "right" sigmoidal and hyperbolic tangent artificial neural network positive linear operators. In particular we study the degree of approximation of these operators to the unit operator in the univariate and multivariate cases over bounded or unbounded domains. This is given via inequalities and with the use of modulus of continuity of the involved function or its higher order derivative. We examine the real and complex cases.  For the convenience of the reader, the chapters of this book are written in a self-contained style. This treatise relies on author's last two years of related research work. Advanced courses and seminars can be taught out of this brief book. All necessary background and motivations are given per chapter. A related list of references is given also per chapter. The exposed results are expected to find applications in many areas of computer science and applied mathematics, such as neural networks, intelligent systems, complexity theory, learning theory, vision and approximation theory, etc. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, also for all science libraries. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Applications of Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642214301 
830 0 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 19 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-21431-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)