Energy Methods in Dynamics

The above examples should make clear the necessity of understanding the mechanism of vibrations and waves in order to control them in an optimal way. However vibrations and waves are governed by differential equations which require, as a rule, rather complicated mathematical methods for their analys...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Le, Khanh Chau (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Σειρά:Interaction of Mechanics and Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04147nam a22005655i 4500
001 978-3-642-22404-1
003 DE-He213
005 20151204150108.0
007 cr nn 008mamaa
008 110924s2012 gw | s |||| 0|eng d
020 |a 9783642224041  |9 978-3-642-22404-1 
024 7 |a 10.1007/978-3-642-22404-1  |2 doi 
040 |d GrThAP 
050 4 |a TA355 
050 4 |a TA352-356 
072 7 |a TGMD4  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a SCI018000  |2 bisacsh 
082 0 4 |a 620  |2 23 
100 1 |a Le, Khanh Chau.  |e author. 
245 1 0 |a Energy Methods in Dynamics  |h [electronic resource] /  |c by Khanh Chau Le. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2012. 
300 |a X, 294 p. 142 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Interaction of Mechanics and Mathematics,  |x 1860-6245 
505 0 |a I Linear theory -- 1 Single oscillator -- 2 Coupled oscillator -- 3 Continuous oscillator -- 4 Linear waves -- II Nonlinear theory -- 5 Single oscillator -- 6 Forced oscillator -- 7 Coupled oscillator -- 8 Nonlinear waves. 
520 |a The above examples should make clear the necessity of understanding the mechanism of vibrations and waves in order to control them in an optimal way. However vibrations and waves are governed by differential equations which require, as a rule, rather complicated mathematical methods for their analysis. The aim of this textbook is to help students acquire both a good grasp of the first principles from which the governing equations can be derived, and the adequate mathematical methods for their solving. Its distinctive features, as seen from the title, lie in the systematic and intensive use of Hamilton's variational principle and its generalizations for deriving the governing equations of conservative and dissipative mechanical systems, and also in providing the direct variational-asymptotic analysis, whenever available, of the energy and dissipation for the solution of these equations. It will be demonstrated that many well-known methods in dynamics like those of Lindstedt-Poincare, Bogoliubov-Mitropolsky, Kolmogorov-Arnold-Moser (KAM), and Whitham are derivable from this variational-asymptotic analysis.   This book grew up from the lectures given by the author in the last decade at the Ruhr University Bochum, Germany. Since vibrations and waves are constituents of various disciplines (physics, mechanics, electrical engineering etc.) and cannot be handled in a single textbook, I have restricted myself mainly to vibrations and waves of mechanical nature. The material of this book can be recommended for a one year course in higher dynamics for graduate students of mechanical and civil engineering. For this circle of readers, the emphasis is made on the constructive methods of solution and not on the rigorous mathematical proofs of convergence. As compensation, various numerical simulations of the exact and approximate solutions are provided which demonstrate vividly the validity of the used methods. To help students become more proficient, each chapter ends with exercises, of which some can be solved effectively by using Mathematica. . 
650 0 |a Engineering. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Complexity, Computational. 
650 0 |a Vibration. 
650 0 |a Dynamical systems. 
650 1 4 |a Engineering. 
650 2 4 |a Vibration, Dynamical Systems, Control. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Complexity. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642224034 
830 0 |a Interaction of Mechanics and Mathematics,  |x 1860-6245 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-22404-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)