Average Time Complexity of Decision Trees

Decision tree is a widely used form of representing algorithms and knowledge. Compact data models  and fast algorithms require optimization of tree complexity. This book is a research monograph on  average time complexity of decision trees. It generalizes several known results and considers a number...

Full description

Bibliographic Details
Main Author: Chikalov, Igor (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Series:Intelligent Systems Reference Library, 21
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 02991nam a22004575i 4500
001 978-3-642-22661-8
003 DE-He213
005 20151125141244.0
007 cr nn 008mamaa
008 110809s2011 gw | s |||| 0|eng d
020 |a 9783642226618  |9 978-3-642-22661-8 
024 7 |a 10.1007/978-3-642-22661-8  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Chikalov, Igor.  |e author. 
245 1 0 |a Average Time Complexity of Decision Trees  |h [electronic resource] /  |c by Igor Chikalov. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XII, 104 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 21 
505 0 |a 1 Introduction -- 2 Bounds on Average Time Complexity of Decision Trees -- 3 Representing Boolean Functions by Decision Trees -- 4 Algorithms for Decision Tree Construction -- 5 Problems Over Information Systems. 
520 |a Decision tree is a widely used form of representing algorithms and knowledge. Compact data models  and fast algorithms require optimization of tree complexity. This book is a research monograph on  average time complexity of decision trees. It generalizes several known results and considers a number of new problems.    The book contains exact and approximate algorithms for decision tree optimization, and bounds on minimum average time  complexity of decision trees. Methods of combinatorics, probability theory and complexity theory are used in the proofs as  well as concepts from various branches of discrete mathematics and computer science. The considered applications include the study of average depth of decision trees for Boolean functions from closed classes, the comparison of results of the performance  of greedy heuristics for average depth minimization with optimal decision trees constructed by dynamic programming algorithm, and optimization of decision trees for the corner point recognition problem from computer vision.   The book can be interesting for researchers working on time complexity of algorithms and specialists  in test theory, rough set theory, logical analysis of data and machine learning. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642226601 
830 0 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 21 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-22661-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)