Coarse-to-Fine Natural Language Processing

The impact of computer systems that can understand natural language will be tremendous. To develop this capability we need to be able to automatically and efficiently analyze large amounts of text. Manually devised rules are not sufficient to provide coverage to handle the complex structure of natur...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Petrov, Slav (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Σειρά:Theory and Applications of Natural Language Processing,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03333nam a22004215i 4500
001 978-3-642-22743-1
003 DE-He213
005 20150520191056.0
007 cr nn 008mamaa
008 111102s2012 gw | s |||| 0|eng d
020 |a 9783642227431  |9 978-3-642-22743-1 
024 7 |a 10.1007/978-3-642-22743-1  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UY  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
082 0 4 |a 004  |2 23 
100 1 |a Petrov, Slav.  |e author. 
245 1 0 |a Coarse-to-Fine Natural Language Processing  |h [electronic resource] /  |c by Slav Petrov. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a XXII, 106 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Theory and Applications of Natural Language Processing,  |x 2192-032X 
505 0 |a 1.Introduction -- 2.Latent Variable Grammars for Natural Language Parsing -- 3.Discriminative Latent Variable Grammars -- 4.Structured Acoustic Models for Speech Recognition -- 5.Coarse-to-Fine Machine Translation Decoding -- 6.Conclusions and Future Work -- Bibliography. 
520 |a The impact of computer systems that can understand natural language will be tremendous. To develop this capability we need to be able to automatically and efficiently analyze large amounts of text. Manually devised rules are not sufficient to provide coverage to handle the complex structure of natural language, necessitating systems that can automatically learn from examples. To handle the flexibility of natural language, it has become standard practice to use statistical models, which assign probabilities for example to the different meanings of a word or the plausibility of grammatical constructions. This book develops a general coarse-to-fine framework for learning and inference in large statistical models for natural language processing. Coarse-to-fine approaches exploit a sequence of models which introduce complexity gradually. At the top of the sequence is a trivial model in which learning and inference are both cheap. Each subsequent model refines the previous one, until a final, full-complexity model is reached. Applications of this framework to syntactic parsing, speech recognition and machine translation are presented, demonstrating the effectiveness of the approach in terms of accuracy and speed. This book is intended for students and researchers interested in statistical approaches to Natural Language Processing.  Slav’s work Coarse-to-Fine Natural Language Processing represents a major advance in the area of syntactic parsing, and a great advertisement for the superiority of the machine-learning approach. Eugene Charniak (Brown University). 
650 0 |a Computer science. 
650 1 4 |a Computer Science. 
650 2 4 |a Computer Science, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642227424 
830 0 |a Theory and Applications of Natural Language Processing,  |x 2192-032X 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-22743-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SHU 
950 |a Humanities, Social Sciences and Law (Springer-11648)