Logic and Games on Automatic Structures Playing with Quantifiers and Decompositions /

The evaluation of a logical formula can be viewed as a game played by two opponents, one trying to show that the formula is true and the other trying to prove it is false. This correspondence has been known for a very long time and has inspired numerous research directions. In this book, the author...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kaiser, Łukasz (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Lecture Notes in Computer Science, 6810
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04073nam a22005295i 4500
001 978-3-642-22807-0
003 DE-He213
005 20151123155520.0
007 cr nn 008mamaa
008 110720s2011 gw | s |||| 0|eng d
020 |a 9783642228070  |9 978-3-642-22807-0 
024 7 |a 10.1007/978-3-642-22807-0  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Kaiser, Łukasz.  |e author. 
245 1 0 |a Logic and Games on Automatic Structures  |h [electronic resource] :  |b Playing with Quantifiers and Decompositions /  |c by Łukasz Kaiser. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XII, 118 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 6810 
505 0 |a 1 Logics, Structures and Presentations -- 2 Game Quantifiers on Automatic Presentations -- 3 Games for Model Checking on Automatic Structures -- 4 Memory Structures for Infinitary Games -- 5 Counting Quantifiers on Automatic Structures -- 6 Cardinality Quantifiers in MSO on Linear Orders -- 7 Cardinality Quantifiers in MSO on Trees -- 8 Outlook. 
520 |a The evaluation of a logical formula can be viewed as a game played by two opponents, one trying to show that the formula is true and the other trying to prove it is false. This correspondence has been known for a very long time and has inspired numerous research directions. In this book, the author extends this connection between logic and games to the class of automatic structures, where relations are recognized by synchronous finite automata. In model-checking games for automatic structures, two coalitions play against each other with a particular kind of hierarchical imperfect information. The investigation of such games leads to the introduction of a game quantifier on automatic structures, which connects alternating automata with the classical model-theoretic notion of a game quantifier. This study is then extended, determining the memory needed for strategies in infinitary games on the one hand, and characterizing regularity-preserving Lindström quantifiers on the other. Counting quantifiers are investigated in depth: it is shown that all countable omega-automatic structures are in fact finite-word automatic and that the infinity and uncountability set quantifiers are definable in MSO over countable linear orders and over labeled binary trees. This book is based on the PhD thesis of Lukasz Kaiser, which was awarded with the E.W. Beth award for outstanding dissertations in the fields of logic, language, and information in 2009. The work constitutes an innovative study in the area of algorithmic model theory, demonstrating the deep interplay between logic and computability in automatic structures. It displays very high technical and presentational quality and originality, advances significantly the field of algorithmic model theory and raises interesting new questions, thus emerging as a fruitful and inspiring source for future research. 
650 0 |a Computer science. 
650 0 |a Mathematical logic. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Mathematical Logic and Formal Languages. 
650 2 4 |a Symbolic and Algebraic Manipulation. 
650 2 4 |a Mathematical Logic and Foundations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642228063 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 6810 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-22807-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)