A Feature-Centric View of Information Retrieval

Commercial Web search engines such as Google, Yahoo, and Bing are used every day by millions of people across the globe. With their ever-growing refinement and usage, it has become increasingly difficult for academic researchers to keep up with the collection sizes and other critical research issues...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Metzler, Donald (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:The Information Retrieval Series, 27
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03752nam a22005055i 4500
001 978-3-642-22898-8
003 DE-He213
005 20151103123340.0
007 cr nn 008mamaa
008 110915s2011 gw | s |||| 0|eng d
020 |a 9783642228988  |9 978-3-642-22898-8 
024 7 |a 10.1007/978-3-642-22898-8  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UNH  |2 bicssc 
072 7 |a UND  |2 bicssc 
072 7 |a COM030000  |2 bisacsh 
082 0 4 |a 025.04  |2 23 
100 1 |a Metzler, Donald.  |e author. 
245 1 2 |a A Feature-Centric View of Information Retrieval  |h [electronic resource] /  |c by Donald Metzler. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XII, 168 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a The Information Retrieval Series,  |x 1387-5264 ;  |v 27 
505 0 |a Introduction -- Classical Retrieval Models -- Feature-Based Ranking -- Feature-Based Query Expanion -- Query-Dependent Feature Weighting -- Model Learning. 
520 |a Commercial Web search engines such as Google, Yahoo, and Bing are used every day by millions of people across the globe. With their ever-growing refinement and usage, it has become increasingly difficult for academic researchers to keep up with the collection sizes and other critical research issues related to Web search, which has created a divide between the information retrieval research being done within academia and industry.  Such large collections pose a new set of challenges for information retrieval researchers. In this work, Metzler describes highly effective information retrieval models for both smaller, classical data sets, and larger Web collections. In a shift away from heuristic, hand-tuned ranking functions and complex probabilistic models, he presents feature-based retrieval models. The Markov random field model he details goes beyond the traditional yet ill-suited bag of words assumption in two ways. First, the model can easily exploit various types of dependencies that exist between query terms, eliminating the term independence assumption that often accompanies bag of words models. Second, arbitrary textual or non-textual features can be used within the model. As he shows, combining term dependencies and arbitrary features results in a very robust, powerful retrieval model. In addition, he describes several extensions, such as an automatic feature selection algorithm and a query expansion framework. The resulting model and extensions provide a flexible framework for highly effective retrieval across a wide range of tasks and data sets. A Feature-Centric View of Information Retrieval provides graduate students, as well as academic and industrial researchers in the fields of information retrieval and Web search with a modern perspective on information retrieval modeling and Web searches. 
650 0 |a Computer science. 
650 0 |a Mathematical statistics. 
650 0 |a Information storage and retrieval. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Computer mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Mathematical Applications in Computer Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642228971 
830 0 |a The Information Retrieval Series,  |x 1387-5264 ;  |v 27 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-22898-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)