Mathematical Aspects of Discontinuous Galerkin Methods

This book introduces the basic ideas for building discontinuous Galerkin methods and, at the same time, incorporates several recent mathematical developments. It is to a large extent self-contained and is intended for graduate students and researchers in numerical analysis. The material covers a wid...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Di Pietro, Daniele Antonio (Συγγραφέας), Ern, Alexandre (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Σειρά:Mathématiques et Applications, 69
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02923nam a22005175i 4500
001 978-3-642-22980-0
003 DE-He213
005 20151204172742.0
007 cr nn 008mamaa
008 111102s2012 gw | s |||| 0|eng d
020 |a 9783642229800  |9 978-3-642-22980-0 
024 7 |a 10.1007/978-3-642-22980-0  |2 doi 
040 |d GrThAP 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
100 1 |a Di Pietro, Daniele Antonio.  |e author. 
245 1 0 |a Mathematical Aspects of Discontinuous Galerkin Methods  |h [electronic resource] /  |c by Daniele Antonio Di Pietro, Alexandre Ern. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2012. 
300 |a XVII, 384 p. 34 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathématiques et Applications,  |x 1154-483X ;  |v 69 
505 0 |a Basic concepts -- Steady advection-reaction -- Unsteady first-order PDEs -- PDEs with diffusion -- Additional topics on pure diffusion -- Incompressible flows -- Friedhrichs' Systems -- Implementation. 
520 |a This book introduces the basic ideas for building discontinuous Galerkin methods and, at the same time, incorporates several recent mathematical developments. It is to a large extent self-contained and is intended for graduate students and researchers in numerical analysis. The material covers a wide range of model problems, both steady and unsteady, elaborating from advection-reaction and diffusion problems up to the Navier-Stokes equations and Friedrichs' systems. Both finite-element and finite-volume viewpoints are utilized to convey the main ideas underlying the design of the approximation. The analysis is presented in a rigorous mathematical setting where discrete counterparts of the key properties of the continuous problem are identified. The framework encompasses fairly general meshes regarding element shapes and hanging nodes. Salient implementation issues are also addressed. 
650 0 |a Mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Numerical analysis. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
700 1 |a Ern, Alexandre.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642229794 
830 0 |a Mathématiques et Applications,  |x 1154-483X ;  |v 69 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-22980-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)