Optimised Projections for the Ab Initio Simulation of Large and Strongly Correlated Systems

Density functional theory (DFT) has become the standard workhorse for quantum mechanical simulations as it offers a good compromise between accuracy and computational cost. However, there are many important systems for which DFT performs very poorly, most notably strongly-correlated materials, resul...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: O'Regan, David D. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Σειρά:Springer Theses
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03908nam a22004935i 4500
001 978-3-642-23238-1
003 DE-He213
005 20151204182543.0
007 cr nn 008mamaa
008 110922s2012 gw | s |||| 0|eng d
020 |a 9783642232381  |9 978-3-642-23238-1 
024 7 |a 10.1007/978-3-642-23238-1  |2 doi 
040 |d GrThAP 
050 4 |a QC611.9-611.98 
072 7 |a TJFD5  |2 bicssc 
072 7 |a TEC039000  |2 bisacsh 
072 7 |a SCI021000  |2 bisacsh 
082 0 4 |a 530.41  |2 23 
100 1 |a O'Regan, David D.  |e author. 
245 1 0 |a Optimised Projections for the Ab Initio Simulation of Large and Strongly Correlated Systems  |h [electronic resource] /  |c by David D. O'Regan. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2012. 
300 |a XVI, 216 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses 
505 0 |a An Introduction to Linear-Scaling Ab Initio Calculations -- Linear-Scaling DFT+U for Large Strongly-Correlated Systems.-  Projector Self-Consistent DFT+U Using Nonorthogonal Generalised Wannier Functions.-Linear-Scaling Ab Initio Calculations.-Linear-Scaling DFT+U for Large Strongly Correlated Systems.-  Optimised Projections for Strongly-Correlated Subspaces -- Projector Self-Consistent DFT +U Using Nonorthogonal  Generalised Wannier Functions -- Subspace Representations in Ab Initio Methods for Strongly Correlated Systems -- Tensorial  Consequences of Projection Optimisation -- Geometric Aspects of Representation Optimisation.-  A Numerical Study of Geometric Corrections for Representation Optimisation -- Tensorial Aspects of Calculating Hubbard U Interaction Parameters -- Discussion and Conclusion -- Appendix: Geometric Observations. 
520 |a Density functional theory (DFT) has become the standard workhorse for quantum mechanical simulations as it offers a good compromise between accuracy and computational cost. However, there are many important systems for which DFT performs very poorly, most notably strongly-correlated materials, resulting in a significant recent growth in interest in 'beyond DFT'  methods. The widely used  DFT+U technique, in particular, involves the addition of explicit Coulomb repulsion terms to reproduce the physics of spatially-localised electronic subspaces. The magnitude of these corrective terms, measured by the famous Hubbard U parameter, has received much attention but less so for the projections used to delineate these subspaces. The dependence on the choice of these projections is studied in detail here and a method to overcome this ambiguity in DFT+U, by self-consistently determining the projections, is introduced. The author shows how nonorthogonal representations for electronic states may be used to construct these projections and, furthermore, how DFT+U may be implemented with a linearly increasing cost with respect to system size. The use of nonorthogonal functions in the context of electronic structure calculations is extensively discussed and clarified, with new interpretations and results, and, on this topic, this work may serve as a reference for future workers in the field. 
650 0 |a Physics. 
650 0 |a Solid state physics. 
650 0 |a Superconductivity. 
650 0 |a Superconductors. 
650 1 4 |a Physics. 
650 2 4 |a Strongly Correlated Systems, Superconductivity. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Solid State Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642232374 
830 0 |a Springer Theses 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-23238-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)