Hyperbolic Chaos A Physicist’s View /

"Hyperbolic Chaos: A Physicist’s View” presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kuznetsov, Sergey P. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03430nam a22004935i 4500
001 978-3-642-23666-2
003 DE-He213
005 20151204161052.0
007 cr nn 008mamaa
008 120320s2012 gw | s |||| 0|eng d
020 |a 9783642236662  |9 978-3-642-23666-2 
024 7 |a 10.1007/978-3-642-23666-2  |2 doi 
040 |d GrThAP 
050 4 |a QC174.7-175.36 
072 7 |a PBWR  |2 bicssc 
072 7 |a PHDT  |2 bicssc 
072 7 |a SCI012000  |2 bisacsh 
082 0 4 |a 621  |2 23 
100 1 |a Kuznetsov, Sergey P.  |e author. 
245 1 0 |a Hyperbolic Chaos  |h [electronic resource] :  |b A Physicist’s View /  |c by Sergey P. Kuznetsov. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2012. 
300 |a XVI, 320 p. 80 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Part I Basic Notions and Review: Dynamical Systems and Hyperbolicity -- Dynamical Systems and Hyperbolicity -- Part II Low-Dimensional Models: Kicked Mechanical Models and Differential Equations with Periodic Switch -- Non-Autonomous Systems of Coupled Self-Oscillators -- Autonomous Low-dimensional Systems with Uniformly Hyperbolic Attractors in the Poincar´e Maps -- Parametric Generators of Hyperbolic Chaos -- Recognizing the Hyperbolicity: Cone Criterion and Other Approaches -- Part III Higher-Dimensional Systems and Phenomena: Systems of Four Alternately Excited Non-autonomous Oscillators -- Autonomous Systems Based on Dynamics Close to Heteroclinic Cycle -- Systems with Time-delay Feedback -- Chaos in Co-operative Dynamics of Alternately Synchronized Ensembles of Globally Coupled Self-oscillators -- Part IV Experimental Studies: Electronic Device with Attractor of Smale-Williams Type -- Delay-time Electronic Devices Generating Trains of Oscillations with Phases Governed by Chaotic Maps. 
520 |a "Hyperbolic Chaos: A Physicist’s View” presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic properties, but are insensitive to variation of functions and parameters in the dynamical systems. Based on these characteristics of hyperbolic chaos, this monograph shows how to find hyperbolic chaotic attractors in physical systems and how to design a physical systems that possess hyperbolic chaos.   This book is designed as a reference work for university professors and researchers in the fields of physics, mechanics, and engineering.   Dr. Sergey P. Kuznetsov is a professor at the Department of Nonlinear Processes, Saratov State University, Russia.  . 
650 0 |a Physics. 
650 0 |a System theory. 
650 0 |a Statistical physics. 
650 0 |a Vibration. 
650 0 |a Dynamical systems. 
650 0 |a Dynamics. 
650 1 4 |a Physics. 
650 2 4 |a Nonlinear Dynamics. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Vibration, Dynamical Systems, Control. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642236655 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-23666-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)