Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics

The purpose of these lecture notes is to provide an introduction to the theory of complex Monge–Ampère operators (definition, regularity issues, geometric properties of solutions, approximation) on compact Kähler manifolds (with or without boundary). These operators are of central use in several fun...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Guedj, Vincent (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Σειρά:Lecture Notes in Mathematics, 2038
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03809nam a22005175i 4500
001 978-3-642-23669-3
003 DE-He213
005 20151204175545.0
007 cr nn 008mamaa
008 120104s2012 gw | s |||| 0|eng d
020 |a 9783642236693  |9 978-3-642-23669-3 
024 7 |a 10.1007/978-3-642-23669-3  |2 doi 
040 |d GrThAP 
050 4 |a QA331.7 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.94  |2 23 
245 1 0 |a Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics  |h [electronic resource] /  |c edited by Vincent Guedj. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2012. 
300 |a VIII, 310 p. 4 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2038 
505 0 |a 1.Introduction -- I. The Local Homogenious Dirichlet Problem.-2. Dirichlet Problem in Domains of Cn -- 3. Geometric Maximality -- II. Stochastic Analysis for the Monge-Ampère Equation -- 4. Probabilistic Approach to Regularity -- III. Monge-Ampère Equations on Compact Manifolds -- 5.The Calabi-Yau Theorem -- IV Geodesics in the Space of Kähler Metrics -- 6. The Riemannian Space of Kähler Metrics -- 7. MA Equations on Manifolds with Boundary -- 8. Bergman Geodesics. 
520 |a The purpose of these lecture notes is to provide an introduction to the theory of complex Monge–Ampère operators (definition, regularity issues, geometric properties of solutions, approximation) on compact Kähler manifolds (with or without boundary). These operators are of central use in several fundamental problems of complex differential geometry (Kähler–Einstein equation, uniqueness of constant scalar curvature metrics), complex analysis and dynamics. The topics covered include, the Dirichlet problem (after Bedford–Taylor), Monge–Ampère foliations and laminated currents, polynomial hulls and Perron envelopes with no analytic structure, a self-contained presentation of Krylov regularity results, a modernized proof of the Calabi–Yau theorem (after Yau and Kolodziej), an introduction to infinite dimensional riemannian geometry, geometric structures on spaces of Kähler metrics (after Mabuchi, Semmes and Donaldson), generalizations of the regularity theory of Caffarelli–Kohn–Nirenberg–Spruck (after Guan, Chen and Blocki) and Bergman approximation of geodesics (after Phong–Sturm and Berndtsson). Each chapter can be read independently and is based on a series of lectures by R. Berman, Z. Blocki, S. Boucksom, F. Delarue, R. Dujardin, B. Kolev and A. Zeriahi, delivered to non-experts. The book is thus addressed to any mathematician with some interest in one of the following fields, complex differential geometry, complex analysis, complex dynamics, fully non-linear PDE's and stochastic analysis. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Partial differential equations. 
650 0 |a Functions of complex variables. 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Algebraic Geometry. 
700 1 |a Guedj, Vincent.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642236686 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2038 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-23669-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)