Inequalities Theorems, Techniques and Selected Problems /

This work is about inequalities which play an important role in mathematical Olympiads. It contains 175 solved problems in the form of exercises and, in addition, 310 solved problems. The book also covers the theoretical background of the most important theorems and techniques required for solving i...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Cvetkovski, Zdravko (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03334nam a22004575i 4500
001 978-3-642-23792-8
003 DE-He213
005 20151204170157.0
007 cr nn 008mamaa
008 120104s2012 gw | s |||| 0|eng d
020 |a 9783642237928  |9 978-3-642-23792-8 
024 7 |a 10.1007/978-3-642-23792-8  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Cvetkovski, Zdravko.  |e author. 
245 1 0 |a Inequalities  |h [electronic resource] :  |b Theorems, Techniques and Selected Problems /  |c by Zdravko Cvetkovski. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2012. 
300 |a X, 444 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a "Basic (elementary) inequalities and their application -- Inequalities between means, (with two and three variables) -- Geometric (triangle) inequalities -- Bernoulli’s inequality, the Cauchy–Schwarz inequality, Chebishev’s inequality, Surányi’s inequality -- Inequalities between means (general case) -- Points of incidence in applications of the AM–GM inequality -- The rearrangement inequality -- Convexity, Jensen’s inequality -- Trigonometric substitutions and their application for proving algebraic inequalities -- The most usual forms of trigonometric substitutions -- Characteristic examples, using trigonometric substitutions -- Hölder’s inequality, Minkowski’s inequality and their generalizations -- Generalizations of the Cauchy–Schwarz inequality, Chebishev’s inequality and the mean inequalities -- Newton’s inequality, Maclaurin’s inequality -- Schur’s inequality, Muirhead’s inequality -- Two theorems from differential calculus, and their applications for proving inequalities -- One method of proving symmetric inequalities with three variables -- Method for proving symmetric inequalities with three variables defined on set of real numbers -- Abstract concreteness method (ABC method) -- Sum of Squares (S.O.S - method) -- Strong mixing variables method (S.M.V Theorem) -- Lagrange multipliers method. 
520 |a This work is about inequalities which play an important role in mathematical Olympiads. It contains 175 solved problems in the form of exercises and, in addition, 310 solved problems. The book also covers the theoretical background of the most important theorems and techniques required for solving inequalities. It is written for all middle and high-school students, as well as for graduate and undergraduate students. School teachers and trainers for mathematical competitions will also gain benefit from this book. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Mathematics  |x Study and teaching. 
650 0 |a Popular works. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Popular Science, general. 
650 2 4 |a Mathematics Education. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642237911 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-23792-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)