Spectral Analysis on Graph-like Spaces

Small-radius tubular structures have attracted considerable attention in the last few years, and are frequently used in different areas such as Mathematical Physics, Spectral Geometry and Global Analysis.   In this monograph, we analyse Laplace-like operators on thin tubular structures ("graph-...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Post, Olaf (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Σειρά:Lecture Notes in Mathematics, 2039
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Περιγραφή
Περίληψη:Small-radius tubular structures have attracted considerable attention in the last few years, and are frequently used in different areas such as Mathematical Physics, Spectral Geometry and Global Analysis.   In this monograph, we analyse Laplace-like operators on thin tubular structures ("graph-like spaces''), and their natural limits on metric graphs. In particular, we explore norm resolvent convergence, convergence of the spectra and resonances.   Since the underlying spaces in the thin radius limit change, and become singular in the limit, we develop new tools such as   -norm convergence of operators acting in different Hilbert  spaces,   - an extension of the concept of boundary triples to partial  differential operators, and   -an abstract definition of resonances via boundary triples.   These tools are formulated in an abstract framework, independent of the original problem of graph-like spaces, so that they can be applied in many other situations where the spaces are perturbed.
Φυσική περιγραφή:XV, 431 p. 28 illus. online resource.
ISBN:9783642238406
ISSN:0075-8434 ;