Spectral Analysis on Graph-like Spaces

Small-radius tubular structures have attracted considerable attention in the last few years, and are frequently used in different areas such as Mathematical Physics, Spectral Geometry and Global Analysis.   In this monograph, we analyse Laplace-like operators on thin tubular structures ("graph-...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Post, Olaf (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Σειρά:Lecture Notes in Mathematics, 2039
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03181nam a22005775i 4500
001 978-3-642-23840-6
003 DE-He213
005 20151204165801.0
007 cr nn 008mamaa
008 120104s2012 gw | s |||| 0|eng d
020 |a 9783642238406  |9 978-3-642-23840-6 
024 7 |a 10.1007/978-3-642-23840-6  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Post, Olaf.  |e author. 
245 1 0 |a Spectral Analysis on Graph-like Spaces  |h [electronic resource] /  |c by Olaf Post. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2012. 
300 |a XV, 431 p. 28 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2039 
505 0 |a 1 Introduction -- 2 Graphs and associated Laplacians -- 3 Scales of Hilbert space and boundary triples -- 4 Two operators in different Hilbert spaces -- 5 Manifolds, tubular neighbourhoods and their perturbations -- 6 Plumber’s shop: Estimates for star graphs and related spaces -- 7 Global convergence results. 
520 |a Small-radius tubular structures have attracted considerable attention in the last few years, and are frequently used in different areas such as Mathematical Physics, Spectral Geometry and Global Analysis.   In this monograph, we analyse Laplace-like operators on thin tubular structures ("graph-like spaces''), and their natural limits on metric graphs. In particular, we explore norm resolvent convergence, convergence of the spectra and resonances.   Since the underlying spaces in the thin radius limit change, and become singular in the limit, we develop new tools such as   -norm convergence of operators acting in different Hilbert  spaces,   - an extension of the concept of boundary triples to partial  differential operators, and   -an abstract definition of resonances via boundary triples.   These tools are formulated in an abstract framework, independent of the original problem of graph-like spaces, so that they can be applied in many other situations where the spaces are perturbed. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Functional analysis. 
650 0 |a Operator theory. 
650 0 |a Partial differential equations. 
650 0 |a Graph theory. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Operator Theory. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Graph Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642238390 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2039 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-23840-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)