Newton Methods for Nonlinear Problems Affine Invariance and Adaptive Algorithms /

This book deals with the efficient numerical solution of challenging nonlinear problems in science and engineering, both in finite dimension (algebraic systems) and in infinite dimension (ordinary and partial differential equations). Its focus is on local and global Newton methods for direct problem...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Deuflhard, Peter (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Springer Series in Computational Mathematics, 35
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02922nam a22005415i 4500
001 978-3-642-23899-4
003 DE-He213
005 20151125021936.0
007 cr nn 008mamaa
008 110914s2011 gw | s |||| 0|eng d
020 |a 9783642238994  |9 978-3-642-23899-4 
024 7 |a 10.1007/978-3-642-23899-4  |2 doi 
040 |d GrThAP 
050 4 |a QA71-90 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
100 1 |a Deuflhard, Peter.  |e author. 
245 1 0 |a Newton Methods for Nonlinear Problems  |h [electronic resource] :  |b Affine Invariance and Adaptive Algorithms /  |c by Peter Deuflhard. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XII, 424 p. 49 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Computational Mathematics,  |x 0179-3632 ;  |v 35 
520 |a This book deals with the efficient numerical solution of challenging nonlinear problems in science and engineering, both in finite dimension (algebraic systems) and in infinite dimension (ordinary and partial differential equations). Its focus is on local and global Newton methods for direct problems or Gauss-Newton methods for inverse problems. The term 'affine invariance' means that the presented algorithms and their convergence analysis are invariant under one out of four subclasses of affine transformations of the problem to be solved. Compared to traditional textbooks, the distinguishing affine invariance approach leads to shorter theorems and proofs and permits the construction of fully adaptive algorithms. Lots of numerical illustrations, comparison tables, and exercises make the text useful in computational mathematics classes. At the same time, the book opens many directions for possible future research. 
650 0 |a Mathematics. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Differential equations. 
650 0 |a Computer mathematics. 
650 0 |a Mathematical optimization. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Optimization. 
650 2 4 |a Math Applications in Computer Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642238987 
830 0 |a Springer Series in Computational Mathematics,  |x 0179-3632 ;  |v 35 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-23899-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)