Intersections of Hirzebruch–Zagier Divisors and CM Cycles

This monograph treats one case of a series of conjectures by S. Kudla, whose goal is to show that Fourier of Eisenstein series encode information about the Arakelov intersection theory of special cycles on Shimura varieties of orthogonal and unitary type. Here, the Eisenstein series is a Hilbert mod...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Howard, Benjamin (Συγγραφέας), Yang, Tonghai (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Σειρά:Lecture Notes in Mathematics, 2041
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02420nam a22004575i 4500
001 978-3-642-23979-3
003 DE-He213
005 20130726172653.0
007 cr nn 008mamaa
008 120104s2012 gw | s |||| 0|eng d
020 |a 9783642239793  |9 978-3-642-23979-3 
024 7 |a 10.1007/978-3-642-23979-3  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 |a Howard, Benjamin.  |e author. 
245 1 0 |a Intersections of Hirzebruch–Zagier Divisors and CM Cycles  |h [electronic resource] /  |c by Benjamin Howard, Tonghai Yang. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2012. 
300 |a VIII, 140p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2041 
505 0 |a 1. Introduction -- 2. Linear Algebra -- 3. Moduli Spaces of Abelian Surfaces -- 4. Eisenstein Series -- 5. The Main Results -- 6. Local Calculations. 
520 |a This monograph treats one case of a series of conjectures by S. Kudla, whose goal is to show that Fourier of Eisenstein series encode information about the Arakelov intersection theory of special cycles on Shimura varieties of orthogonal and unitary type. Here, the Eisenstein series is a Hilbert modular form of weight one over a real quadratic field, the Shimura variety is a classical Hilbert modular surface, and the special cycles are complex multiplication points and the Hirzebruch–Zagier divisors. By developing new techniques in deformation theory, the authors successfully compute the Arakelov intersection multiplicities of these divisors, and show that they agree with the Fourier coefficients of derivatives of Eisenstein series. 
650 0 |a Mathematics. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
700 1 |a Yang, Tonghai.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642239786 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2041 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-23979-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)