Modeling Dose-Response Microarray Data in Early Drug Development Experiments Using R Order-Restricted Analysis of Microarray Data /

This book focuses on the analysis of dose-response microarray data in pharmaceutical setting, the goal being to cover this important topic for early drug development and to provide user-friendly R packages that can be used to analyze dose-response microarray data. It is intended for biostatisticians...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Lin, Dan (Επιμελητής έκδοσης), Shkedy, Ziv (Επιμελητής έκδοσης), Yekutieli, Daniel (Επιμελητής έκδοσης), Amaratunga, Dhammika (Επιμελητής έκδοσης), Bijnens, Luc (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Σειρά:Use R!
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04287nam a22005775i 4500
001 978-3-642-24007-2
003 DE-He213
005 20151204172216.0
007 cr nn 008mamaa
008 120824s2012 gw | s |||| 0|eng d
020 |a 9783642240072  |9 978-3-642-24007-2 
024 7 |a 10.1007/978-3-642-24007-2  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
245 1 0 |a Modeling Dose-Response Microarray Data in Early Drug Development Experiments Using R  |h [electronic resource] :  |b Order-Restricted Analysis of Microarray Data /  |c edited by Dan Lin, Ziv Shkedy, Daniel Yekutieli, Dhammika Amaratunga, Luc Bijnens. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a XV, 282 p. 96 illus., 4 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Use R! 
505 0 |a Introduction -- Part I: Dose-response Modeling: An Introduction -- Estimation Under Order Restrictions -- The Likelihood Ratio Test -- Part II: Dose-response Microarray Experiments -- Functional Genomic Dose-response Experiments -- Adjustment for Multiplicity -- Test for Trend -- Order Restricted Bisclusters -- Classification of Trends in Dose-response Microarray Experiments Using Information Theory Selection Methods -- Multiple Contrast Test -- Confidence Intervals for the Selected Parameters -- Case Study Using GUI in R: Gene Expression Analysis After Acute Treatment With Antipsychotics. 
520 |a This book focuses on the analysis of dose-response microarray data in pharmaceutical setting, the goal being to cover this important topic for early drug development and to provide user-friendly R packages that can be used to analyze dose-response microarray data. It is intended for biostatisticians and bioinformaticians in the pharmaceutical industry, biologists, and biostatistics/bioinformatics graduate students. Part I of the book is an introduction, in which we discuss the dose-response setting and the problem of estimating normal means under order restrictions. In particular, we discuss the pooled-adjacent-violator (PAV) algorithm and isotonic regression, as well as the likelihood ratio test and non-linear parametric models, which are used in the second part of the book.  Part II is the core of the book. Methodological topics discussed include: ·         Multiplicity adjustment ·         Test statistics and testing procedures for the analysis of dose-response microarray data ·         Resampling-based inference and use of the SAM method at the presence of small-variance genes in the data ·         Identification and classification of dose-response curve shapes ·         Clustering of order restricted (but not necessarily monotone) dose-response profiles ·         Hierarchical Bayesian models and non-linear models for dose-response microarray data ·         Multiple contrast tests All methodological issues in the book are illustrated using four “real-world” examples of dose-response microarray datasets from early drug development experiments. 
650 0 |a Statistics. 
650 0 |a Pharmaceutical technology. 
650 0 |a Bioinformatics. 
650 0 |a Biostatistics. 
650 0 |a Computational biology. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics, general. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
650 2 4 |a Pharmaceutical Sciences/Technology. 
650 2 4 |a Biostatistics. 
650 2 4 |a Bioinformatics. 
650 2 4 |a Computer Appl. in Life Sciences. 
700 1 |a Lin, Dan.  |e editor. 
700 1 |a Shkedy, Ziv.  |e editor. 
700 1 |a Yekutieli, Daniel.  |e editor. 
700 1 |a Amaratunga, Dhammika.  |e editor. 
700 1 |a Bijnens, Luc.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642240065 
830 0 |a Use R! 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-24007-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)