Fault Detection and Flight Data Measurement Demonstrated on Unmanned Air Vehicles Using Neural Networks /

This book considers two popular topics: fault detection and isolation (FDI) and flight data estimation using flush air data sensing (FADS) systems. Literature surveys, comparison tests, simulations and wind tunnel tests are performed. In both cases, a UAV platform is considered for demonstration pur...

Full description

Bibliographic Details
Main Authors: Samy, Ihab (Author), Gu, Da-Wei (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Series:Lecture Notes in Control and Information Sciences, 419
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03084nam a22005295i 4500
001 978-3-642-24052-2
003 DE-He213
005 20151125212424.0
007 cr nn 008mamaa
008 111104s2011 gw | s |||| 0|eng d
020 |a 9783642240522  |9 978-3-642-24052-2 
024 7 |a 10.1007/978-3-642-24052-2  |2 doi 
040 |d GrThAP 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 629.8  |2 23 
100 1 |a Samy, Ihab.  |e author. 
245 1 0 |a Fault Detection and Flight Data Measurement  |h [electronic resource] :  |b Demonstrated on Unmanned Air Vehicles Using Neural Networks /  |c by Ihab Samy, Da-Wei Gu. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XX, 176 p. 82 illus., 23 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Control and Information Sciences,  |x 0170-8643 ;  |v 419 
505 0 |a Introduction -- Fault detection and isolation (FDI) -- Introduction to FADS systems -- Neural Networks -- SFDA-Single sensor faults -- SFDIA-Multiple sensor faults -- FADS system applied to a MAV -- Conclusions and Future Work. 
520 |a This book considers two popular topics: fault detection and isolation (FDI) and flight data estimation using flush air data sensing (FADS) systems. Literature surveys, comparison tests, simulations and wind tunnel tests are performed. In both cases, a UAV platform is considered for demonstration purposes. In the first part of the book, FDI is considered for sensor faults where a neural network approach is implemented. FDI is applied both in academia and industry resulting in many publications over the past 50 years or so. However few publications consider neural networks in comparison to traditional techniques such as observer based, parameter estimations and parity space approaches. The second part of this book focuses on how to estimate flight data (angle of attack, airspeed) using a matrix of pressure sensors and a neural network model. In conclusion this book can serve as an introduction to FDI and FADS systems, a literature survey, and a case study for UAV applications. 
650 0 |a Engineering. 
650 0 |a System theory. 
650 0 |a Computational intelligence. 
650 0 |a Aerospace engineering. 
650 0 |a Astronautics. 
650 0 |a Control engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Control. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Aerospace Technology and Astronautics. 
650 2 4 |a Systems Theory, Control. 
700 1 |a Gu, Da-Wei.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642240515 
830 0 |a Lecture Notes in Control and Information Sciences,  |x 0170-8643 ;  |v 419 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-24052-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)