Quantum Triangulations Moduli Spaces, Strings, and Quantum Computing /

Research on polyhedral manifolds often points to unexpected connections between very distinct aspects of Mathematics and Physics. In particular triangulated manifolds play quite a distinguished role in such settings as Riemann moduli space theory, strings and quantum gravity, topological quantum fie...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Carfora, Mauro (Συγγραφέας), Marzuoli, Annalisa (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Σειρά:Lecture Notes in Physics, 845
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03740nam a22005655i 4500
001 978-3-642-24440-7
003 DE-He213
005 20151123194853.0
007 cr nn 008mamaa
008 120113s2012 gw | s |||| 0|eng d
020 |a 9783642244407  |9 978-3-642-24440-7 
024 7 |a 10.1007/978-3-642-24440-7  |2 doi 
040 |d GrThAP 
050 4 |a QC1-75 
072 7 |a PH  |2 bicssc 
072 7 |a SCI055000  |2 bisacsh 
082 0 4 |a 530  |2 23 
100 1 |a Carfora, Mauro.  |e author. 
245 1 0 |a Quantum Triangulations  |h [electronic resource] :  |b Moduli Spaces, Strings, and Quantum Computing /  |c by Mauro Carfora, Annalisa Marzuoli. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2012. 
300 |a XVII, 284 p. 90 illus., 10 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Physics,  |x 0075-8450 ;  |v 845 
505 0 |a Triangulated Surfaces and Polyhedral Structures -- Singular Euclidean Structures an Riemann Surfaces -- Polyhedral Surfaces and the Weil-Petersson Form -- The Quantum Geometry of Polyhedral Surfaces -- State Sum Models and Observables -- Combinatorial Framework for Topological Quantum Computing -- A Capsule of Moduli Space Theory -- Spectral Theory on Polyhedral Surfaces -- Index. 
520 |a Research on polyhedral manifolds often points to unexpected connections between very distinct aspects of Mathematics and Physics. In particular triangulated manifolds play quite a distinguished role in such settings as Riemann moduli space theory, strings and quantum gravity, topological quantum field theory, condensed matter physics, and critical phenomena. Not only do they provide a natural discrete analogue to the smooth manifolds on which physical theories are typically formulated, but their appearance is rather often a consequence of an underlying structure which naturally calls into play non-trivial aspects of representation theory, of complex analysis and topology in a way which makes manifest the basic geometric structures of the physical interactions involved. Yet, in most of the existing literature, triangulated manifolds are still merely viewed as a convenient discretization of a given physical theory to make it more amenable for numerical treatment.   The motivation for these lectures notes is thus to provide an approachable introduction to this topic, emphasizing the conceptual aspects, and probing, through a set of cases studies, the connection between triangulated manifolds and quantum physics to the deepest.   This volume addresses applied mathematicians and theoretical physicists working in the field of quantum geometry and its applications.  . 
650 0 |a Physics. 
650 0 |a Mathematical physics. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 0 |a Gravitation. 
650 0 |a Quantum physics. 
650 1 4 |a Physics. 
650 2 4 |a Physics, general. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Classical and Quantum Gravitation, Relativity Theory. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
700 1 |a Marzuoli, Annalisa.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642244391 
830 0 |a Lecture Notes in Physics,  |x 0075-8450 ;  |v 845 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-24440-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
912 |a ZDB-2-LNP 
950 |a Physics and Astronomy (Springer-11651)