Reinforcement Learning for Adaptive Dialogue Systems A Data-driven Methodology for Dialogue Management and Natural Language Generation /

The past decade has seen a revolution in the field of spoken dialogue systems. As in other areas of Computer Science and Artificial Intelligence, data-driven methods are now being used to drive new methodologies for system development and evaluation. This book is a unique contribution to that ongoin...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Rieser, Verena (Συγγραφέας), Lemon, Oliver (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Theory and Applications of Natural Language Processing
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1.Introduction
  • 2.Background
  • 3.Reinforcement Learning for Information Seeking dialogue strategies
  • 4.The bootstrapping approach to developing Reinforcement Learning-based  strategies
  • 5.Data Collection in aWizard-of-Oz experiment
  • 6.Building a simulated learning environment from Wizard-of-Oz data
  • 7.Comparing Reinforcement and Supervised Learning of dialogue policies with real users
  • 8.Meta-evaluation
  • 9.Adaptive Natural Language Generation
  • 10.Conclusion
  • References
  • Example Dialogues
  • A.1.Wizard-of-Oz Example Dialogues
  • A.2.Example Dialogues from Simulated Interaction
  • A.3.Example Dialogues from User Testing
  • Learned State-Action Mappings
  • Index.