Mathematical Modeling for Complex Fluids and Flows

Mathematical Modeling for Complex Fluids and Flows provides researchers and engineering practitioners encountering fluid flows with state-of-the-art knowledge in continuum concepts and associated fluid dynamics. In doing so it supplies the means to design mathematical models of these flows that adeq...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Deville, Michel O. (Συγγραφέας), Gatski, Thomas B. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03536nam a22005295i 4500
001 978-3-642-25295-2
003 DE-He213
005 20151125231520.0
007 cr nn 008mamaa
008 120111s2012 gw | s |||| 0|eng d
020 |a 9783642252952  |9 978-3-642-25295-2 
024 7 |a 10.1007/978-3-642-25295-2  |2 doi 
040 |d GrThAP 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Deville, Michel O.  |e author. 
245 1 0 |a Mathematical Modeling for Complex Fluids and Flows  |h [electronic resource] /  |c by Michel O. Deville, Thomas B. Gatski. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2012. 
300 |a XX, 264 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1. Introduction -- 2. Tensor Analysis, Invariants, and Representations -- 3. Kinematics and Dynamics -- 4. Constitutive Equations: General Principles -- 5. Non-Newtonian and Viscoelastic Fluids -- 6. Turbulent Flows -- 7. The Boltzmann Equation -- 8. Properties of the Hermite Polynomials -- Table of symbols -- References. 
520 |a Mathematical Modeling for Complex Fluids and Flows provides researchers and engineering practitioners encountering fluid flows with state-of-the-art knowledge in continuum concepts and associated fluid dynamics. In doing so it supplies the means to design mathematical models of these flows that adequately express the engineering physics involved. It exploits the implicit link between the turbulent flow of classical Newtonian fluids and the laminar and turbulent flow of non-Newtonian fluids such as those required in food processing and polymeric flows. The book develops a descriptive mathematical model articulated through continuum mechanics concepts for these non-Newtonian, viscoelastic fluids and turbulent flows. Each complex fluid and flow is examined in this continuum context as well as in combination with the turbulent flow of viscoelastic fluids. Some details are also explored via kinetic theory, especially viscoelastic fluids and their treatment with the Boltzmann equation. Both solution and modeling strategies for turbulent flows are laid out using continuum concepts, including a description of constructing polynomial representations and accounting for non-inertial and curvature effects. Ranging from fundamental concepts to practical methodology, and including discussion of emerging technologies, this book is ideal for those requiring a single-source assessment of current practice in this intricate yet vital field. 
650 0 |a Mathematics. 
650 0 |a Computer simulation. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Mathematical models. 
650 0 |a Physics. 
650 0 |a Fluids. 
650 1 4 |a Mathematics. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Fluid- and Aerodynamics. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Simulation and Modeling. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
700 1 |a Gatski, Thomas B.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642252945 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-25295-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)