A Theory of Branched Minimal Surfaces

One of the most elementary questions in mathematics is whether an area minimizing surface spanning a contour in three space is immersed or not; i.e. does its derivative have maximal rank everywhere. The purpose of this monograph is to present an elementary proof of this very fundamental and beautifu...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Tromba, Anthony (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03366nam a22005175i 4500
001 978-3-642-25620-2
003 DE-He213
005 20151031111101.0
007 cr nn 008mamaa
008 120104s2012 gw | s |||| 0|eng d
020 |a 9783642256202  |9 978-3-642-25620-2 
024 7 |a 10.1007/978-3-642-25620-2  |2 doi 
040 |d GrThAP 
050 4 |a QA331-355 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.9  |2 23 
100 1 |a Tromba, Anthony.  |e author. 
245 1 2 |a A Theory of Branched Minimal Surfaces  |h [electronic resource] /  |c by Anthony Tromba. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2012. 
300 |a X, 194 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 |a 1.Introduction -- 2.Higher order Derivatives of Dirichlets' Energy -- 3.Very Special Case; The Theorem for n + 1 Even and m + 1 Odd -- 4.The First Main Theorem; Non-Exceptional Branch Points -- 5.The Second Main Theorem: Exceptional Branch Points; The Condition k > l -- 6.Exceptional Branch Points Without The Condition k > l -- 7.New Brief Proofs of the Gulliver-Osserman-Royden Theorem -- 8.Boundary Branch Points -- Scholia -- Appendix -- Bibliography. 
520 |a One of the most elementary questions in mathematics is whether an area minimizing surface spanning a contour in three space is immersed or not; i.e. does its derivative have maximal rank everywhere. The purpose of this monograph is to present an elementary proof of this very fundamental and beautiful mathematical result. The exposition follows the original line of attack initiated by Jesse Douglas in his Fields medal work in 1931, namely use Dirichlet's energy as opposed to area. Remarkably, the author shows how to calculate arbitrarily high orders of derivatives of Dirichlet's energy defined on the infinite dimensional manifold of all surfaces spanning a contour, breaking new ground in the Calculus of Variations, where normally only the second derivative or variation is calculated.  The monograph begins with easy examples leading to a proof in a large number of cases that can be presented in a graduate course in either manifolds or complex analysis. Thus this monograph requires only the most basic knowledge of analysis, complex analysis and topology and can therefore be read by almost anyone with a basic graduate education. 
650 0 |a Mathematics. 
650 0 |a Functions of complex variables. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Sequences (Mathematics). 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Sequences, Series, Summability. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642256196 
830 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-25620-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)