A Theory of Branched Minimal Surfaces

One of the most elementary questions in mathematics is whether an area minimizing surface spanning a contour in three space is immersed or not; i.e. does its derivative have maximal rank everywhere. The purpose of this monograph is to present an elementary proof of this very fundamental and beautifu...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Tromba, Anthony (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1.Introduction
  • 2.Higher order Derivatives of Dirichlets' Energy
  • 3.Very Special Case; The Theorem for n + 1 Even and m + 1 Odd
  • 4.The First Main Theorem; Non-Exceptional Branch Points
  • 5.The Second Main Theorem: Exceptional Branch Points; The Condition k > l
  • 6.Exceptional Branch Points Without The Condition k > l
  • 7.New Brief Proofs of the Gulliver-Osserman-Royden Theorem
  • 8.Boundary Branch Points
  • Scholia
  • Appendix
  • Bibliography.