Structure Discovery in Natural Language

Current language technology is dominated by approaches that either enumerate a large set of rules, or are focused on a large amount of manually labelled data. The creation of both is time-consuming and expensive, which is commonly thought to be the reason why automated natural language understanding...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Biemann, Chris (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Σειρά:Theory and Applications of Natural Language Processing
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03661nam a22005055i 4500
001 978-3-642-25923-4
003 DE-He213
005 20151124202044.0
007 cr nn 008mamaa
008 111207s2012 gw | s |||| 0|eng d
020 |a 9783642259234  |9 978-3-642-25923-4 
024 7 |a 10.1007/978-3-642-25923-4  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Biemann, Chris.  |e author. 
245 1 0 |a Structure Discovery in Natural Language  |h [electronic resource] /  |c by Chris Biemann. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2012. 
300 |a XX, 180 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Theory and Applications of Natural Language Processing 
505 0 |a Foreword by Antal van den Bosch -- 1.Introduction -- 2.Graph Models -- 3.SmallWorlds of Natural Language -- 4.Graph Clustering -- 5.Unsupervised Language Separation -- 6.Unsupervised Part-of-Speech Tagging -- 7.Word Sense Induction and Disambiguation -- 8.Conclusion -- References . 
520 |a Current language technology is dominated by approaches that either enumerate a large set of rules, or are focused on a large amount of manually labelled data. The creation of both is time-consuming and expensive, which is commonly thought to be the reason why automated natural language understanding has still not made its way into “real-life” applications yet. This book sets an ambitious goal: to shift the development of language processing systems to a much more automated setting than previous works. A new approach is defined: what if computers analysed large samples of language data on their own, identifying structural regularities that perform the necessary abstractions and generalisations in order to better understand language in the process? After defining the framework of Structure Discovery and shedding light on the nature and the graphic structure of natural language data, several procedures are described that do exactly this: let the computer discover structures without supervision in order to boost the performance of language technology applications. Here, multilingual documents are sorted by language, word classes are identified, and semantic ambiguities are discovered and resolved without using a dictionary or other explicit human input. The book concludes with an outlook on the possibilities implied by this paradigm and sets the methods in perspective to human computer interaction. The target audience are academics on all levels (undergraduate and graduate students, lecturers and professors) working in the fields of natural language processing and computational linguistics, as well as natural language engineers who are seeking to improve their systems.  . 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 0 |a Graph theory. 
650 0 |a Computational linguistics. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computational Linguistics. 
650 2 4 |a Graph Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642259227 
830 0 |a Theory and Applications of Natural Language Processing 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-25923-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)