Spherical Harmonics and Approximations on the Unit Sphere: An Introduction

These notes provide an introduction to the theory of spherical harmonics in an arbitrary dimension as well as an overview of classical and recent results on some aspects of the approximation of functions by spherical polynomials and numerical integration over the unit sphere. The notes are intended...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Atkinson, Kendall (Συγγραφέας), Han, Weimin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Σειρά:Lecture Notes in Mathematics, 2044
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02909nam a22005895i 4500
001 978-3-642-25983-8
003 DE-He213
005 20151123194750.0
007 cr nn 008mamaa
008 120216s2012 gw | s |||| 0|eng d
020 |a 9783642259838  |9 978-3-642-25983-8 
024 7 |a 10.1007/978-3-642-25983-8  |2 doi 
040 |d GrThAP 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
100 1 |a Atkinson, Kendall.  |e author. 
245 1 0 |a Spherical Harmonics and Approximations on the Unit Sphere: An Introduction  |h [electronic resource] /  |c by Kendall Atkinson, Weimin Han. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a IX, 244 p. 19 illus., 11 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2044 
505 0 |a 1 Preliminaries -- 2 Spherical Harmonics -- 3 Differentiation and Integration over the Sphere -- 4 Approximation Theory -- 5 Numerical Quadrature -- 6 Applications: Spectral Methods. 
520 |a These notes provide an introduction to the theory of spherical harmonics in an arbitrary dimension as well as an overview of classical and recent results on some aspects of the approximation of functions by spherical polynomials and numerical integration over the unit sphere. The notes are intended for graduate students in the mathematical sciences and researchers who are interested in solving problems involving partial differential and integral equations on the unit sphere, especially on the unit sphere in three-dimensional Euclidean space. Some related work for approximation on the unit disk in the plane is also briefly discussed, with results being generalizable to the unit ball in more dimensions. 
650 0 |a Mathematics. 
650 0 |a Approximation theory. 
650 0 |a Integral equations. 
650 0 |a Partial differential equations. 
650 0 |a Special functions. 
650 0 |a Numerical analysis. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Special Functions. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Integral Equations. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Physics, general. 
700 1 |a Han, Weimin.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642259821 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2044 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-25983-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)