Data Fusion: Concepts and Ideas

“Data Fusion: Concepts and Ideas” provides a comprehensive introduction to the concepts and idea of multisensor data fusion. This textbook is an extensively revised second edition of the author's successful book: "Multi-Sensor Data Fusion: An Introduction". The book is self-contained...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Mitchell, H B. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Έκδοση:2nd ed. 2012.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03110nam a22005175i 4500
001 978-3-642-27222-6
003 DE-He213
005 20151204161543.0
007 cr nn 008mamaa
008 120209s2012 gw | s |||| 0|eng d
020 |a 9783642272226  |9 978-3-642-27222-6 
024 7 |a 10.1007/978-3-642-27222-6  |2 doi 
040 |d GrThAP 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
050 4 |a TK7882.S65 
072 7 |a TTBM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 |a Mitchell, H B.  |e author. 
245 1 0 |a Data Fusion: Concepts and Ideas  |h [electronic resource] /  |c by H B Mitchell. 
250 |a 2nd ed. 2012. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2012. 
300 |a XIV, 346 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Sensors -- Architecture -- Common Representational Format -- Spatial Alignment -- Temporal Alignment -- Semantic Alignment -- Radiometric Normalization -- Bayesian Inference -- Parameter Estimation -- Robust Statistics -- Sequential Bayesian Inference -- Bayesian Decision Theory -- Ensemble Learning -- Sensor Management. 
520 |a “Data Fusion: Concepts and Ideas” provides a comprehensive introduction to the concepts and idea of multisensor data fusion. This textbook is an extensively revised second edition of the author's successful book: "Multi-Sensor Data Fusion: An Introduction". The book is self-contained and no previous knowledge of multi-sensor data fusion is assumed. The reader is made familiar with tools taken from a wide range of diverse subjects including: neural networks, signal processing, statistical estimation, tracking algorithms, computer vision and control theory which are combined by using a common statistical framework. As a consequence, the underlying pattern of relationships that exists between the different methodologies is made evident. The book is illustrated with many real-life examples taken from a diverse range of applications and contains an extensive list of modern references. The new completely revised and updated edition includes nearly 70 pages of new material including a full new chapter as well as approximately 30 new sections, 50 new examples and 100 new references as well as additional Matlab code where appropriate. 
650 0 |a Engineering. 
650 0 |a Computational intelligence. 
650 0 |a Electronics. 
650 0 |a Microelectronics. 
650 1 4 |a Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Electronics and Microelectronics, Instrumentation. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642272219 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-27222-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)