Almost Periodic Solutions of Impulsive Differential Equations

Impulsive differential equations are suitable for the mathematical simulation of evolutionary processes in which the parameters undergo relatively long periods of smooth variation followed by short-term rapid changes (that is, jumps) in their values. Processes of this type are often investigated in...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Stamov, Gani T. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Σειρά:Lecture Notes in Mathematics, 2047
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02866nam a22005175i 4500
001 978-3-642-27546-3
003 DE-He213
005 20151105111033.0
007 cr nn 008mamaa
008 120308s2012 gw | s |||| 0|eng d
020 |a 9783642275463  |9 978-3-642-27546-3 
024 7 |a 10.1007/978-3-642-27546-3  |2 doi 
040 |d GrThAP 
050 4 |a QA372 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.352  |2 23 
100 1 |a Stamov, Gani T.  |e author. 
245 1 0 |a Almost Periodic Solutions of Impulsive Differential Equations  |h [electronic resource] /  |c by Gani T. Stamov. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2012. 
300 |a XX, 217 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2047 
505 0 |a 1 Impulsive Differential Equations and Almost Periodicity -- 2 Almost Periodic Solutions -- 3 Lyapunov Method and Almost Periodicity -- 4 Applications. 
520 |a Impulsive differential equations are suitable for the mathematical simulation of evolutionary processes in which the parameters undergo relatively long periods of smooth variation followed by short-term rapid changes (that is, jumps) in their values. Processes of this type are often investigated in various fields of science and technology. The question of the existence and uniqueness of almost periodic solutions of differential equations is an age-old problem of great importance. The qualitative theory of impulsive differential equations is currently undergoing rapid development in relation to the investigation of various processes which are subject to impacts during their evolution, and many findings on the existence and uniqueness of almost periodic solutions of these equations are being made. This book systematically presents findings related to almost periodic solutions of impulsive differential equations and illustrates their potential applications. 
650 0 |a Mathematics. 
650 0 |a Difference equations. 
650 0 |a Functional equations. 
650 0 |a Differential equations. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Difference and Functional Equations. 
650 2 4 |a Applications of Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642275456 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2047 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-27546-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)