Sparsity Graphs, Structures, and Algorithms /

This is the first book devoted to the systematic study of sparse graphs and sparse finite structures. Although the notion of sparsity appears in various contexts and is a typical example of a hard to define notion, the authors devised an unifying classification of general classes of structures. This...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Nešetřil, Jaroslav (Συγγραφέας), Ossona de Mendez, Patrice (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Σειρά:Algorithms and Combinatorics, 28
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03738nam a22005535i 4500
001 978-3-642-27875-4
003 DE-He213
005 20151204182602.0
007 cr nn 008mamaa
008 120423s2012 gw | s |||| 0|eng d
020 |a 9783642278754  |9 978-3-642-27875-4 
024 7 |a 10.1007/978-3-642-27875-4  |2 doi 
040 |d GrThAP 
050 4 |a QA164-167.2 
072 7 |a PBV  |2 bicssc 
072 7 |a MAT036000  |2 bisacsh 
082 0 4 |a 511.6  |2 23 
100 1 |a Nešetřil, Jaroslav.  |e author. 
245 1 0 |a Sparsity  |h [electronic resource] :  |b Graphs, Structures, and Algorithms /  |c by Jaroslav Nešetřil, Patrice Ossona de Mendez. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a XXIII, 459 p. 132 illus., 100 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algorithms and Combinatorics,  |x 0937-5511 ;  |v 28 
505 0 |a Part I Presentation: 1. Introduction -- 2. A Few Problems -- 3. Commented Contents -- Part II. The Theory: 4. Prolegomena -- 5. Measuring Sparsity -- 6. Classes and their Classification -- 7. Bounded Height Trees and Tree-Depth -- 8. Decomposition -- 9. Independence -- 10. First-Order Constraint Satisfaction Problems and Homomorphism Dualities -- 11. Restricted Homomorphism Dualities -- 12. Counting -- 13. Back to Classes -- Part III Applications: 14. Classes with Bounded Expansion – Examples -- 15. Property Testing, Hyperfiniteness and Separators -- 16. Algorithmic Applications -- 17. Other Applications -- 18. Conclusion -- Bibliography -- Index -- List of Symbols . 
520 |a This is the first book devoted to the systematic study of sparse graphs and sparse finite structures. Although the notion of sparsity appears in various contexts and is a typical example of a hard to define notion, the authors devised an unifying classification of general classes of structures. This approach is very robust and it has many remarkable properties. For example the classification is expressible in many different ways involving most extremal combinatorial invariants. This study of sparse structures found applications in such diverse areas as algorithmic graph theory, complexity of algorithms, property testing, descriptive complexity and mathematical logic (homomorphism preservation,fixed parameter tractability and constraint satisfaction problems). It should be stressed that despite of its generality this approach leads to linear (and nearly linear) algorithms. Jaroslav Nešetřil is a professor at Charles University, Prague; Patrice Ossona de Mendez is a CNRS researcher et EHESS, Paris. This book is related to the material presented by the first author at  ICM 2010. 
650 0 |a Mathematics. 
650 0 |a Algorithms. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Convex geometry. 
650 0 |a Discrete geometry. 
650 0 |a Mathematical logic. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Combinatorics. 
650 2 4 |a Discrete Mathematics in Computer Science. 
650 2 4 |a Convex and Discrete Geometry. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
700 1 |a Ossona de Mendez, Patrice.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642278747 
830 0 |a Algorithms and Combinatorics,  |x 0937-5511 ;  |v 28 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-27875-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)