Degenerate Nonlinear Diffusion Equations

The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Favini, Angelo (Συγγραφέας), Marinoschi, Gabriela (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Σειρά:Lecture Notes in Mathematics, 2049
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03267nam a22005175i 4500
001 978-3-642-28285-0
003 DE-He213
005 20151204171256.0
007 cr nn 008mamaa
008 120507s2012 gw | s |||| 0|eng d
020 |a 9783642282850  |9 978-3-642-28285-0 
024 7 |a 10.1007/978-3-642-28285-0  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Favini, Angelo.  |e author. 
245 1 0 |a Degenerate Nonlinear Diffusion Equations  |h [electronic resource] /  |c by Angelo Favini, Gabriela Marinoschi. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a XXI, 143 p. 12 illus., 9 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2049 
505 0 |a 1 Parameter identification in a parabolic-elliptic degenerate problem -- 2 Existence for diffusion degenerate problems -- 3 Existence for nonautonomous parabolic-elliptic degenerate diffusion Equations -- 4 Parameter identification in a parabolic-elliptic degenerate problem. 
520 |a The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asymptotic behaviour, discretization schemes, coefficient identification, and to introduce relevant solving methods for each of them. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Calculus of variations. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Marinoschi, Gabriela.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642282843 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2049 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-28285-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)