Cross Disciplinary Biometric Systems

Cross disciplinary biometric systems help boost the performance of the conventional systems. Not only is the recognition accuracy significantly improved, but also the robustness of the systems is greatly enhanced in the challenging environments, such as varying illumination conditions. By leveraging...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Liu, Chengjun (Συγγραφέας), Mago, Vijay Kumar (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Σειρά:Intelligent Systems Reference Library, 37
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03830nam a22005175i 4500
001 978-3-642-28457-1
003 DE-He213
005 20151125221830.0
007 cr nn 008mamaa
008 120417s2012 gw | s |||| 0|eng d
020 |a 9783642284571  |9 978-3-642-28457-1 
024 7 |a 10.1007/978-3-642-28457-1  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Liu, Chengjun.  |e author. 
245 1 0 |a Cross Disciplinary Biometric Systems  |h [electronic resource] /  |c by Chengjun Liu, Vijay Kumar Mago. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2012. 
300 |a XVI, 228 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 37 
505 0 |a Feature Local Binary Patterns -- New Color Features for Pattern Recognition -- Gabor-DCT Features with Application to Face Recognition -- Frequency and Color Fusion for Face Verification -- Mixture of Classifiers for Face Recognition Across Pose -- Wavelet Features for 3D Face Recognition -- Minutiae-based Fingerprint Matching -- Iris segmentation: state of the art and innovative methods -- Various Discriminatory Features for Eye Detection -- LBP and Color Descriptors for Image Classification. 
520 |a Cross disciplinary biometric systems help boost the performance of the conventional systems. Not only is the recognition accuracy significantly improved, but also the robustness of the systems is greatly enhanced in the challenging environments, such as varying illumination conditions. By leveraging the cross disciplinary technologies, face recognition systems, fingerprint recognition systems, iris recognition systems, as well as image search systems all benefit in terms of recognition performance.  Take face recognition for an example, which is not only the most natural way human beings recognize the identity of each other, but also the least privacy-intrusive means because people show their face publicly every day. Face recognition systems display superb performance when they capitalize on the innovative ideas across color science, mathematics, and computer science (e.g., pattern recognition, machine learning, and image processing). The novel ideas lead to the development of new color models and effective color features in color science; innovative features from wavelets and statistics, and new kernel methods and novel kernel models in mathematics; new discriminant analysis frameworks, novel similarity measures, and new image analysis methods, such as fusing multiple image features from frequency domain, spatial domain, and color domain in computer science; as well as system design, new strategies for system integration, and different fusion strategies, such as the feature level fusion, decision level fusion, and new fusion strategies with novel similarity measures. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 0 |a Biometrics (Biology). 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Biometrics. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Mago, Vijay Kumar.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642284564 
830 0 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 37 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-28457-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)