Emerging Paradigms in Machine Learning

This  book presents fundamental topics and algorithms that form the core of machine learning (ML) research, as well as emerging paradigms in intelligent system design. The  multidisciplinary nature of machine learning makes it a very fascinating and popular area for research.  The book is aiming at...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Ramanna, Sheela (Επιμελητής έκδοσης), Jain, Lakhmi C. (Επιμελητής έκδοσης), Howlett, Robert J. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Smart Innovation, Systems and Technologies, 13
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03128nam a22004815i 4500
001 978-3-642-28699-5
003 DE-He213
005 20151125221706.0
007 cr nn 008mamaa
008 120730s2013 gw | s |||| 0|eng d
020 |a 9783642286995  |9 978-3-642-28699-5 
024 7 |a 10.1007/978-3-642-28699-5  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Emerging Paradigms in Machine Learning  |h [electronic resource] /  |c edited by Sheela Ramanna, Lakhmi C Jain, Robert J. Howlett. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XXII, 498 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Smart Innovation, Systems and Technologies,  |x 2190-3018 ;  |v 13 
505 0 |a From the content: Emerging Paradigms in Machine Learning: An Introduction -- Extensions of Dynamic Programming as a New Tool for Decision Tree Optimization -- Optimised information abstraction in granular Min/Max clustering -- Mining Incomplete Data—A Rough Set Approach -- Roles Played by Bayesian Networks in Machine Learning: An Empirical Investigation. 
520 |a This  book presents fundamental topics and algorithms that form the core of machine learning (ML) research, as well as emerging paradigms in intelligent system design. The  multidisciplinary nature of machine learning makes it a very fascinating and popular area for research.  The book is aiming at students, practitioners and researchers and captures the diversity and richness of the field of machine learning and intelligent systems.  Several chapters are devoted to computational learning models such as granular computing, rough sets and fuzzy sets An account of applications of well-known learning methods in biometrics, computational stylistics, multi-agent systems, spam classification including an extremely well-written survey on Bayesian networks shed light on the strengths and weaknesses of the methods. Practical studies yielding insight into challenging problems such as learning from incomplete and imbalanced data, pattern recognition of stochastic episodic events and on-line mining of non-stationary data streams are a key part of this book.   . 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Ramanna, Sheela.  |e editor. 
700 1 |a Jain, Lakhmi C.  |e editor. 
700 1 |a Howlett, Robert J.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642286988 
830 0 |a Smart Innovation, Systems and Technologies,  |x 2190-3018 ;  |v 13 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-28699-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)