Data Fusion in Information Retrieval

The technique of data fusion has been used extensively in information retrieval due to the complexity and diversity of tasks involved such as web and social networks, legal, enterprise, and many others. This book presents both a theoretical and empirical approach to data fusion. Several typical data...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Wu, Shengli (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Σειρά:Adaptation, Learning, and Optimization, 13
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02763nam a22004815i 4500
001 978-3-642-28866-1
003 DE-He213
005 20151125141133.0
007 cr nn 008mamaa
008 120405s2012 gw | s |||| 0|eng d
020 |a 9783642288661  |9 978-3-642-28866-1 
024 7 |a 10.1007/978-3-642-28866-1  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Wu, Shengli.  |e author. 
245 1 0 |a Data Fusion in Information Retrieval  |h [electronic resource] /  |c by Shengli Wu. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2012. 
300 |a XII, 228 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Adaptation, Learning, and Optimization,  |x 1867-4534 ;  |v 13 
505 0 |a Introduction -- Evaluation of Retrieval Results -- Score Normalization -- Observations and Analyses -- The Linear Combination Method -- A Geometric Framework for Data Fusion -- Ranking-Based Fusion -- Fusing Results from Overlapping Databases -- Application of the Data Fusion Technique. 
520 |a The technique of data fusion has been used extensively in information retrieval due to the complexity and diversity of tasks involved such as web and social networks, legal, enterprise, and many others. This book presents both a theoretical and empirical approach to data fusion. Several typical data fusion algorithms are discussed, analyzed and evaluated. A reader will find answers to the following questions, among others: -          What are the key factors that affect the performance of data fusion algorithms significantly? -          What conditions are favorable to data fusion algorithms? -          CombSum and CombMNZ, which one is better? and why? -          What is the rationale of using the linear combination method? -          How can the best fusion option be found under any given circumstances? 
650 0 |a Engineering. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Data Mining and Knowledge Discovery. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642288654 
830 0 |a Adaptation, Learning, and Optimization,  |x 1867-4534 ;  |v 13 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-28866-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)