Evolutionary Hierarchical Multi-Criteria Metaheuristics for Scheduling in Large-Scale Grid Systems

One of the most challenging issues in modelling today's large-scale computational systems is to effectively manage highly parametrised distributed environments such as computational grids, clouds, ad hoc networks and P2P networks. Next-generation computational grids must provide a wide range of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kołodziej, Joanna (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Σειρά:Studies in Computational Intelligence, 419
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03652nam a22004575i 4500
001 978-3-642-28971-2
003 DE-He213
005 20151125231230.0
007 cr nn 008mamaa
008 120713s2012 gw | s |||| 0|eng d
020 |a 9783642289712  |9 978-3-642-28971-2 
024 7 |a 10.1007/978-3-642-28971-2  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Kołodziej, Joanna.  |e author. 
245 1 0 |a Evolutionary Hierarchical Multi-Criteria Metaheuristics for Scheduling in Large-Scale Grid Systems  |h [electronic resource] /  |c by Joanna Kołodziej. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a XXVIII, 191 p. 44 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 419 
505 0 |a Scheduling Problems in Grid Computing -- Multi-Level Genetic-Based Hierarchical Grid Schedulers -- Security-Driven Scheduling Model for Computational Grid using Multi-level Genetic Meta-heuristics -- Genetic Solutions to Green Scheduling in Computational Grids. 
520 |a One of the most challenging issues in modelling today's large-scale computational systems is to effectively manage highly parametrised distributed environments such as computational grids, clouds, ad hoc networks and P2P networks. Next-generation computational grids must provide a wide range of services and high performance computing infrastructures. Various types of information and data processed in the large-scale dynamic grid environment may be incomplete, imprecise, and fragmented, which complicates the specification of proper evaluation criteria and which affects both the availability of resources and the final collective decisions of users. The complexity of grid architectures and grid management may also contribute towards higher energy consumption. All of these issues necessitate the development of intelligent resource management techniques, which are capable of capturing all of this complexity and optimising meaningful metrics for a wide range of grid applications.   This book covers hot topics in the design, administration and management of dynamic grid environments with a special emphasis on the preferences and autonomous decisions of system users, secure access to the processed data and services, and application of green technologies. It features advanced research related to scalable genetic-based heuristic approaches to grid scheduling, whereby new scheduling criteria, such as system reliability, security, and energy consumption are incorporated into a general scheduling model. This book may be a valuable reference for students, researchers, and practitioners who work on – or who are interested in joining -- interdisciplinary research efforts in the areas of distributed and evolutionary computation.  . 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642289705 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 419 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-28971-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)