Geometry by Its History

In this textbook the authors present first-year geometry roughly in the order in which it was discovered. The first five chapters show how the ancient Greeks established geometry, together with its numerous practical applications, while more recent findings on Euclidian geometry are discussed as wel...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ostermann, Alexander (Συγγραφέας), Wanner, Gerhard (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Σειρά:Undergraduate Texts in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02899nam a22004935i 4500
001 978-3-642-29163-0
003 DE-He213
005 20151103125953.0
007 cr nn 008mamaa
008 120410s2012 gw | s |||| 0|eng d
020 |a 9783642291630  |9 978-3-642-29163-0 
024 7 |a 10.1007/978-3-642-29163-0  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
100 1 |a Ostermann, Alexander.  |e author. 
245 1 0 |a Geometry by Its History  |h [electronic resource] /  |c by Alexander Ostermann, Gerhard Wanner. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2012. 
300 |a XII, 440 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
505 0 |a Preface -- Part I: Classical Geometry -- Thales and Pythagoras -- The Elements of Euclid -- Conic Sections -- Further Results on Euclidean Geometry -- Trigonometry -- Part II: Analytic Geometry -- Descartes' Geometry -- Cartesian Coordinates -- To be Constructible, or not to be -- Spatial Geometry and Vector Algebra -- Matrices and Linear Mappings -- Projective Geometry -- Solutions to Exercises --  References -- Figure Source and Copyright -- Index. 
520 |a In this textbook the authors present first-year geometry roughly in the order in which it was discovered. The first five chapters show how the ancient Greeks established geometry, together with its numerous practical applications, while more recent findings on Euclidian geometry are discussed as well. The following three chapters explain the revolution in  geometry due to the progress made in the field of algebra by Descartes, Euler and Gauss. Spatial geometry, vector algebra and matrices are treated in chapters 9 and 10. The last chapter offers an introduction to projective geometry, which emerged in the 19th century. Complemented by numerous examples, exercises, figures and pictures, the book offers both motivation and insightful explanations, and provides stimulating and enjoyable reading for students and teachers alike. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Geometry. 
650 0 |a History. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a History of Mathematical Sciences. 
700 1 |a Wanner, Gerhard.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642291623 
830 0 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-29163-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)