|
|
|
|
LEADER |
03362nam a22004815i 4500 |
001 |
978-3-642-29378-8 |
003 |
DE-He213 |
005 |
20170301021856.0 |
007 |
cr nn 008mamaa |
008 |
121204s2012 gw | s |||| 0|eng d |
020 |
|
|
|a 9783642293788
|9 978-3-642-29378-8
|
024 |
7 |
|
|a 10.1007/978-3-642-29378-8
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QC173.96-174.52
|
072 |
|
7 |
|a PHQ
|2 bicssc
|
072 |
|
7 |
|a SCI057000
|2 bisacsh
|
082 |
0 |
4 |
|a 530.12
|2 23
|
100 |
1 |
|
|a Pereyra, Pedro.
|e author.
|
245 |
1 |
0 |
|a Fundamentals of Quantum Physics
|h [electronic resource] :
|b Textbook for Students of Science and Engineering /
|c by Pedro Pereyra.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2012.
|
300 |
|
|
|a XVII, 322 p. 78 illus., 62 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Undergraduate Lecture Notes in Physics,
|x 2192-4791
|
505 |
0 |
|
|a From the contents: The origin of the quantum concepts -- Problems -- Diffraction, duality and the Schroedinger equations -- Illustrative problems -- Problems -- Properties of the stationary Schroedinger equation -- Illustrative problems -- Problems -- Tunneling effect and other quantum phenomena -- Problems -- Quantum coherence and energy bands -- Problems -- The WKB approximation -- Problems -- Operators and dynamical variables -- Problems -- The harmonic oscillator -- Problems -- Angular momentum and central potentials.
|
520 |
|
|
|a This book presents a comprehensive course of quantum mechanics for undergraduate and graduate students. After a brief outline of the innovative ideas that lead up to the quantum theory, the book reviews properties of the Schrödinger equation, the quantization phenomena and the physical meaning of wave functions. The book discusses, in a direct and intelligible style, topics of the standard quantum formalism like the dynamical operators and their expected values, the Heisenberg and matrix representation, the approximate methods, the Dirac notation, harmonic oscillator, angular momentum and hydrogen atom, the spin-field and spin-orbit interactions, identical particles and Bose-Einstein condensation etc. Special emphasis is devoted to study the tunneling phenomena, transmission coefficients, phase coherence, energy levels splitting and related phenomena, of interest for quantum devices and heterostructures. The discussion of these problems and the WKB approximation is done using the transfer matrix method, introduced at a tutorial level. This book is a textbook for upper undergraduate physics and electronic engineering students.
|
650 |
|
0 |
|a Physics.
|
650 |
|
0 |
|a Gravitation.
|
650 |
|
0 |
|a Quantum physics.
|
650 |
|
0 |
|a Plasma (Ionized gases).
|
650 |
1 |
4 |
|a Physics.
|
650 |
2 |
4 |
|a Quantum Physics.
|
650 |
2 |
4 |
|a Classical and Quantum Gravitation, Relativity Theory.
|
650 |
2 |
4 |
|a Plasma Physics.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642293771
|
830 |
|
0 |
|a Undergraduate Lecture Notes in Physics,
|x 2192-4791
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-3-642-29378-8
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-PHA
|
950 |
|
|
|a Physics and Astronomy (Springer-11651)
|