Belief Functions: Theory and Applications Proceedings of the 2nd International Conference on Belief Functions, Compiègne, France 9-11 May 2012 /

The theory of belief functions, also known as evidence theory or Dempster-Shafer theory, was first introduced by Arthur P. Dempster in the context of statistical inference, and was later developed by Glenn Shafer as a general framework for modeling epistemic uncertainty. These early contributions ha...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Denoeux, Thierry (Επιμελητής έκδοσης), Masson, Marie-Hélène (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Σειρά:Advances in Intelligent and Soft Computing, 164
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • From the content: On belief functions and random sets
  • Evidential Multi-label classification method using the Random k-Label sets approach
  • An Evidential Improvement for Gender Profiling
  • An Interval-Valued Dissimilarity Measure for Belief Functions Based on Credal Semantics
  • An evidential pattern matching approach for vehicle identification
  • Comparison between a Bayesian approach and a method based on continuous belief functions for pattern recognition
  • Prognostic by classification of predictions combining similarity-based estimation and belief functions
  • Adaptative initialisation of a EvKNN classification algorithm.