Supervised Learning with Complex-valued Neural Networks

Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks. ...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Suresh, Sundaram (Συγγραφέας), Sundararajan, Narasimhan (Συγγραφέας), Savitha, Ramasamy (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Studies in Computational Intelligence, 421
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction
  • Fully Complex-valued Multi Layer Perceptron Networks
  • Fully Complex-valued Radial Basis Function Networks
  • Performance Study on Complex-valued Function Approximation Problems
  • Circular Complex-valued Extreme Learning Machine Classifier
  • Performance Study on Real-valued Classification Problems
  • Complex-valued Self-regulatory Resource Allocation Network
  • Conclusions and Scope for FutureWorks (CSRAN).