Supervised Learning with Complex-valued Neural Networks
Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks. ...
Κύριοι συγγραφείς: | , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2013.
|
Σειρά: | Studies in Computational Intelligence,
421 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introduction
- Fully Complex-valued Multi Layer Perceptron Networks
- Fully Complex-valued Radial Basis Function Networks
- Performance Study on Complex-valued Function Approximation Problems
- Circular Complex-valued Extreme Learning Machine Classifier
- Performance Study on Real-valued Classification Problems
- Complex-valued Self-regulatory Resource Allocation Network
- Conclusions and Scope for FutureWorks (CSRAN).