Advances in K-means Clustering A Data Mining Thinking /

Nearly everyone knows K-means algorithm in the fields of data mining and business intelligence. But the ever-emerging data with extremely complicated characteristics bring new challenges to this "old" algorithm. This book addresses these challenges and makes novel contributions in establis...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Wu, Junjie (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Cluster Analysis and K-means Clustering: An Introduction
  • The Uniform Effect of K-means Clustering
  • Generalizing Distance Functions for Fuzzy c-Means Clustering
  • Information-Theoretic K-means for Text Clustering
  • Selecting External Validation Measures for K-means Clustering
  • K-means Based Local Decomposition for Rare Class Analysis
  • K-means Based Consensus Clustering.