Fluctuations in Markov Processes Time Symmetry and Martingale Approximation /

Diffusive phenomena in statistical mechanics and in other fields arise from markovian modeling and their study requires sophisticated mathematical tools. In infinite dimensional situations, time symmetry properties can be exploited in order to make martingale approximations, along the lines of the s...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Komorowski, Tomasz (Συγγραφέας), Landim, Claudio (Συγγραφέας), Olla, Stefano (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Σειρά:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics, 345
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04282nam a22005055i 4500
001 978-3-642-29880-6
003 DE-He213
005 20151121052045.0
007 cr nn 008mamaa
008 120705s2012 gw | s |||| 0|eng d
020 |a 9783642298806  |9 978-3-642-29880-6 
024 7 |a 10.1007/978-3-642-29880-6  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Komorowski, Tomasz.  |e author. 
245 1 0 |a Fluctuations in Markov Processes  |h [electronic resource] :  |b Time Symmetry and Martingale Approximation /  |c by Tomasz Komorowski, Claudio Landim, Stefano Olla. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a XVIII, 494 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 0072-7830 ;  |v 345 
505 0 |a Preface -- Part I: General Theory -- 1.A Warming-up Example -- 2.Central Limit Theorems -- 3.RandomWalks in Random Environment -- 4.Bounds and Variational Principles for the Asymptotic Variance -- Part II: Simple Exclusion Processes -- 5.The Simple Exclusion Process -- 6.Self Diffusion -- 7.Equilibrium Fluctuations of the Density Field -- 8.Regularity of the Asymptotic Variance -- Part III: Diffusions in Random Environments -- 10.Variational Principles for the Limiting Variance -- 11.Diffusions with Divergence Free Drifts -- 12.Diffusions with Gaussian Drifts -- 13.Ornstein-Uhlenbeck Process with a Random Potential -- 14.Analytic Methods in Homogenization Theory -- References -- Notation -- Subject Index. 
520 |a Diffusive phenomena in statistical mechanics and in other fields arise from markovian modeling and their study requires sophisticated mathematical tools. In infinite dimensional situations, time symmetry properties can be exploited in order to make martingale approximations, along the lines of the seminal work of Kipnis and Varadhan. The present volume contains the most advanced theories on the martingale approach to central limit theorems. Using the time symmetry properties of the Markov processes, the book develops the techniques that allow us to deal with infinite dimensional models that appear in statistical mechanics and engineering (interacting particle systems, homogenization in random environments, and diffusion in turbulent flows, to mention just a few applications). The first part contains a detailed exposition of the method, and can be used as a text for graduate courses. The second concerns application to exclusion processes, in which the duality methods are fully exploited. The third part is about the homogenization of diffusions in random fields, including passive tracers in turbulent flows (including the superdiffusive behavior).   There are no other books in the mathematical literature that deal with this kind of approach to the problem of the central limit theorem. Hence, this volume meets the demand for a monograph on this powerful approach, now widely used in many areas of probability and mathematical physics. The book also covers the connections with and application to hydrodynamic limits and homogenization theory, so besides probability researchers it will also be of interest to mathematical physicists and analysts. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Mathematical Physics. 
700 1 |a Landim, Claudio.  |e author. 
700 1 |a Olla, Stefano.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642298790 
830 0 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 0072-7830 ;  |v 345 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-29880-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)