Recent Advances in Reinforcement Learning 9th European Workshop, EWRL 2011, Athens, Greece, September 9-11, 2011, Revised Selected Papers /

This book constitutes revised and selected papers of the 9th European Workshop on Reinforcement Learning, EWRL 2011, which took place in Athens, Greece in September 2011. The papers presented were carefully reviewed and selected from 40 submissions. The papers are organized in topical sections onlin...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Sanner, Scott (Επιμελητής έκδοσης), Hutter, Marcus (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Σειρά:Lecture Notes in Computer Science, 7188
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02773nam a22005775i 4500
001 978-3-642-29946-9
003 DE-He213
005 20151123144721.0
007 cr nn 008mamaa
008 120518s2012 gw | s |||| 0|eng d
020 |a 9783642299469  |9 978-3-642-29946-9 
024 7 |a 10.1007/978-3-642-29946-9  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Recent Advances in Reinforcement Learning  |h [electronic resource] :  |b 9th European Workshop, EWRL 2011, Athens, Greece, September 9-11, 2011, Revised Selected Papers /  |c edited by Scott Sanner, Marcus Hutter. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2012. 
300 |a XIII, 345 p. 98 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 7188 
520 |a This book constitutes revised and selected papers of the 9th European Workshop on Reinforcement Learning, EWRL 2011, which took place in Athens, Greece in September 2011. The papers presented were carefully reviewed and selected from 40 submissions. The papers are organized in topical sections online reinforcement learning, learning and exploring MDPs, function approximation methods for reinforcement learning, macro-actions in reinforcement learning, policy search and bounds, multi-task and transfer reinforcement learning, multi-agent reinforcement learning, apprenticeship and inverse reinforcement learning and real-world reinforcement learning. 
650 0 |a Computer science. 
650 0 |a Computers. 
650 0 |a Algorithms. 
650 0 |a Mathematical statistics. 
650 0 |a Database management. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computation by Abstract Devices. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Information Systems Applications (incl. Internet). 
650 2 4 |a Database Management. 
650 2 4 |a Probability and Statistics in Computer Science. 
700 1 |a Sanner, Scott.  |e editor. 
700 1 |a Hutter, Marcus.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642299452 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 7188 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-29946-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)