Computational Genetic Regulatory Networks: Evolvable, Self-organizing Systems

Genetic Regulatory Networks (GRNs) in biological organisms are primary engines for cells to enact their engagements with environments, via incessant, continually active coupling. In differentiated multicellular organisms, tremendous complexity has arisen in the course of evolution of life on earth....

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Knabe, Johannes F. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Studies in Computational Intelligence, 428
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03205nam a22004575i 4500
001 978-3-642-30296-1
003 DE-He213
005 20151125201055.0
007 cr nn 008mamaa
008 120813s2013 gw | s |||| 0|eng d
020 |a 9783642302961  |9 978-3-642-30296-1 
024 7 |a 10.1007/978-3-642-30296-1  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Knabe, Johannes F.  |e author. 
245 1 0 |a Computational Genetic Regulatory Networks: Evolvable, Self-organizing Systems  |h [electronic resource] /  |c by Johannes F. Knabe. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a X, 122 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 428 
505 0 |a Evolution -- Genetic Regulatory Networks -- Biological Clocks and Differentiation -- Topological Network Analysis -- Development and Morphogenesis. 
520 |a Genetic Regulatory Networks (GRNs) in biological organisms are primary engines for cells to enact their engagements with environments, via incessant, continually active coupling. In differentiated multicellular organisms, tremendous complexity has arisen in the course of evolution of life on earth. Engineering and science have so far achieved no working system that can compare with this complexity, depth and scope of organization. Abstracting the dynamics of genetic regulatory control to a computational framework in which artificial GRNs in artificial simulated cells differentiate while connected in a changing topology, it is possible to apply Darwinian evolution in silico to study the capacity of such developmental/differentiated GRNs to evolve. In this volume an evolutionary GRN paradigm is investigated for its evolvability and robustness in models of biological clocks, in simple differentiated multicellularity, and in evolving artificial developing 'organisms' which grow and express an ontogeny starting from a single cell interacting with its environment, eventually including a changing local neighbourhood of other cells. These methods may help us understand the genesis, organization, adaptive plasticity, and evolvability of differentiated biological systems, and may also provide a paradigm for transferring these principles of biology's success to computational and engineering challenges at a scale not previously conceivable. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642302954 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 428 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-30296-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)