On Statistical Pattern Recognition in Independent Component Analysis Mixture Modelling

A natural evolution of statistical signal processing, in connection with the progressive increase in computational power, has been exploiting higher-order information. Thus, high-order spectral analysis and nonlinear adaptive filtering have received the attention of many researchers. One of the most...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Salazar, Addisson (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research, 4
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03075nam a22005175i 4500
001 978-3-642-30752-2
003 DE-He213
005 20151204180120.0
007 cr nn 008mamaa
008 120720s2013 gw | s |||| 0|eng d
020 |a 9783642307522  |9 978-3-642-30752-2 
024 7 |a 10.1007/978-3-642-30752-2  |2 doi 
040 |d GrThAP 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
050 4 |a TK7882.S65 
072 7 |a TTBM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 |a Salazar, Addisson.  |e author. 
245 1 0 |a On Statistical Pattern Recognition in Independent Component Analysis Mixture Modelling  |h [electronic resource] /  |c by Addisson Salazar. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XXII, 186 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 ;  |v 4 
505 0 |a Introduction -- ICA and ICAMM Methods -- Learning Mixtures of Independent Component Analysers -- Hierarchical Clustering from ICA Mixtures -- Application of ICAMM to Impact-Echo Testing -- Cultural Heritage Applications: Archaeological Ceramics and Building Restoration -- Other Applications: Sequential Dependence Modelling and Data Mining -- Conclusions. 
520 |a A natural evolution of statistical signal processing, in connection with the progressive increase in computational power, has been exploiting higher-order information. Thus, high-order spectral analysis and nonlinear adaptive filtering have received the attention of many researchers. One of the most successful techniques for non-linear processing of data with complex non-Gaussian distributions is the independent component analysis mixture modelling (ICAMM). This thesis defines a novel formalism for pattern recognition and classification based on ICAMM, which unifies a certain number of pattern recognition tasks allowing generalization. The versatile and powerful framework developed in this work can deal with data obtained from quite different areas, such as image processing, impact-echo testing, cultural heritage, hypnograms analysis, web-mining and might therefore be employed to solve many different real-world problems. 
650 0 |a Engineering. 
650 0 |a Pattern recognition. 
650 0 |a Complexity, Computational. 
650 1 4 |a Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Complexity. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642307515 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 ;  |v 4 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-30752-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)