Iterative Methods for Fixed Point Problems in Hilbert Spaces

Iterative methods for finding fixed points of non-expansive operators in Hilbert spaces have been described in many publications. In this monograph we try to present the methods in a consolidated way. We introduce several classes of operators, examine their properties, define iterative methods gener...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Cegielski, Andrzej (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Lecture Notes in Mathematics, 2057
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02820nam a22005415i 4500
001 978-3-642-30901-4
003 DE-He213
005 20151204175805.0
007 cr nn 008mamaa
008 120913s2013 gw | s |||| 0|eng d
020 |a 9783642309014  |9 978-3-642-30901-4 
024 7 |a 10.1007/978-3-642-30901-4  |2 doi 
040 |d GrThAP 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519.6  |2 23 
100 1 |a Cegielski, Andrzej.  |e author. 
245 1 0 |a Iterative Methods for Fixed Point Problems in Hilbert Spaces  |h [electronic resource] /  |c by Andrzej Cegielski. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XVI, 298 p. 61 illus., 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2057 
505 0 |a 1 Introduction -- 2 Algorithmic Operators -- 3 Convergence of Iterative Methods -- 4 Algorithmic Projection Operators -- 5 Projection methods. 
520 |a Iterative methods for finding fixed points of non-expansive operators in Hilbert spaces have been described in many publications. In this monograph we try to present the methods in a consolidated way. We introduce several classes of operators, examine their properties, define iterative methods generated by operators from these classes and present general convergence theorems. On this basis we discuss the conditions under which particular methods converge. A large part of the results presented in this monograph can be found in various forms in the literature (although several results presented here are new). We have tried, however, to show that the convergence of a large class of iteration methods follows from general properties of some classes of operators and from some general convergence theorems. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Operator theory. 
650 0 |a Numerical analysis. 
650 0 |a Mathematical optimization. 
650 0 |a Calculus of variations. 
650 1 4 |a Mathematics. 
650 2 4 |a Optimization. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Operator Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642309007 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2057 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-30901-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)