|
|
|
|
LEADER |
02966nam a22005175i 4500 |
001 |
978-3-642-30930-4 |
003 |
DE-He213 |
005 |
20151204145350.0 |
007 |
cr nn 008mamaa |
008 |
120709s2012 gw | s |||| 0|eng d |
020 |
|
|
|a 9783642309304
|9 978-3-642-30930-4
|
024 |
7 |
|
|a 10.1007/978-3-642-30930-4
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a TA1671-1707
|
050 |
|
4 |
|a TA1501-1820
|
072 |
|
7 |
|a TTBL
|2 bicssc
|
072 |
|
7 |
|a TEC019000
|2 bisacsh
|
082 |
0 |
4 |
|a 621.36
|2 23
|
100 |
1 |
|
|a Brée, Carsten.
|e author.
|
245 |
1 |
0 |
|a Nonlinear Optics in the Filamentation Regime
|h [electronic resource] /
|c by Carsten Brée.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2012.
|
300 |
|
|
|a XVI, 128 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Springer Theses, Recognizing Outstanding Ph.D. Research,
|x 2190-5053
|
505 |
0 |
|
|a Theoretical Foundations of Femtosecond Filamentation -- Pulse Self-Compression in Femtosecond Filaments -- Saturation and Inversion of the All-Optical Kerr Effect.
|
520 |
|
|
|a This thesis provides deep insights into currently controversial questions in laser filamentation, a highly complex phenomenon involving nonlinear optical effects and plasma physics. First, based on the concrete picture of a femtosecond laser beam which self-pinches its radial intensity distribution, the thesis delivers a novel explanation for the remarkable and previously unexplained phenomenon of pulse self-compression in filaments. Moreover, the work addresses the impact of a non-adiabatic change of both nonlinearity and dispersion on such an intense femtosecond pulse transiting from a gaseous dielectric material to a solid one. Finally, and probably most importantly, the author presents a simple and highly practical theoretical approach for quantitatively estimating the influence of higher-order nonlinear optical effects in optics. These results shed new light on recent experimental observations, which are still hotly debated and may completely change our understanding of filamentation, causing a paradigm change concerning the role of higher-order nonlinearities in optics.
|
650 |
|
0 |
|a Physics.
|
650 |
|
0 |
|a Optics.
|
650 |
|
0 |
|a Electrodynamics.
|
650 |
|
0 |
|a Plasma (Ionized gases).
|
650 |
|
0 |
|a Lasers.
|
650 |
|
0 |
|a Photonics.
|
650 |
1 |
4 |
|a Physics.
|
650 |
2 |
4 |
|a Laser Technology, Photonics.
|
650 |
2 |
4 |
|a Plasma Physics.
|
650 |
2 |
4 |
|a Optics and Electrodynamics.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642309298
|
830 |
|
0 |
|a Springer Theses, Recognizing Outstanding Ph.D. Research,
|x 2190-5053
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-3-642-30930-4
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-PHA
|
950 |
|
|
|a Physics and Astronomy (Springer-11651)
|