Linear Algebra and Geometry

This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inn...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Shafarevich, Igor R. (Συγγραφέας), Remizov, Alexey O. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03110nam a22005055i 4500
001 978-3-642-30994-6
003 DE-He213
005 20151204165041.0
007 cr nn 008mamaa
008 120823s2013 gw | s |||| 0|eng d
020 |a 9783642309946  |9 978-3-642-30994-6 
024 7 |a 10.1007/978-3-642-30994-6  |2 doi 
040 |d GrThAP 
050 4 |a QA184-205 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002050  |2 bisacsh 
082 0 4 |a 512.5  |2 23 
100 1 |a Shafarevich, Igor R.  |e author. 
245 1 0 |a Linear Algebra and Geometry  |h [electronic resource] /  |c by Igor R. Shafarevich, Alexey O. Remizov. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XXII, 526 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Preliminaries -- 1. Linear Equations -- 2. Matrices and Determinants -- 3. Vector Spaces -- 4. Linear Transformations of a Vector Space to Itself -- 5. Jordan Normal Form -- 6. Quadratic and Bilinear Forms -- 7. Euclidean Spaces -- 8. Affine Spaces -- 9. Projective Spaces -- 10. The Exterior Product and Exterior Algebras -- 11. Quadrics -- 12. Hyperbolic Geometry -- 13. Groups, Rings, and Modules -- 14. Elements of Representation Theory -- Historical Note -- References -- Index. 
520 |a This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Matrix theory. 
650 0 |a Geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
650 2 4 |a Algebra. 
650 2 4 |a Geometry. 
650 2 4 |a Associative Rings and Algebras. 
700 1 |a Remizov, Alexey O.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642309939 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-30994-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)