Student’s t-Distribution and Related Stochastic Processes

This brief monograph is an in-depth study of the infinite divisibility and self-decomposability properties of central and noncentral Student’s distributions, represented as variance and mean-variance mixtures of multivariate Gaussian distributions with the reciprocal gamma mixing distribution. These...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Grigelionis, Bronius (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:SpringerBriefs in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02732nam a22004215i 4500
001 978-3-642-31146-8
003 DE-He213
005 20130727041132.0
007 cr nn 008mamaa
008 120917s2013 gw | s |||| 0|eng d
020 |a 9783642311468  |9 978-3-642-31146-8 
024 7 |a 10.1007/978-3-642-31146-8  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Grigelionis, Bronius.  |e author. 
245 1 0 |a Student’s t-Distribution and Related Stochastic Processes  |h [electronic resource] /  |c by Bronius Grigelionis. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XI, 99 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Statistics,  |x 2191-544X 
505 0 |a Introduction -- Asymptotics -- Preliminaries of Lévy Processes -- Student-Lévy Processes -- Student OU-type Processes -- Student Diffusion Processes -- Miscellanea -- Bessel Functions -- References -- Index. 
520 |a This brief monograph is an in-depth study of the infinite divisibility and self-decomposability properties of central and noncentral Student’s distributions, represented as variance and mean-variance mixtures of multivariate Gaussian distributions with the reciprocal gamma mixing distribution. These results allow us to define and analyse Student-Lévy processes as Thorin subordinated Gaussian Lévy processes. A broad class of one-dimensional, strictly stationary diffusions with the Student’s t-marginal distribution are defined as the unique weak solution for the stochastic differential equation. Using the independently scattered random measures generated by the bi-variate centred Student-Lévy process, and stochastic integration theory, a univariate, strictly stationary process with the centred Student’s t- marginals and the arbitrary correlation structure are defined. As a promising direction for future work in constructing and analysing new multivariate Student-Lévy type processes, the notion of Lévy copulas and the related analogue of Sklar’s theorem are explained. 
650 0 |a Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642311451 
830 0 |a SpringerBriefs in Statistics,  |x 2191-544X 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-31146-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)