Prime Divisors and Noncommutative Valuation Theory

Classical valuation theory has applications in number theory and class field theory as well as in algebraic geometry, e.g. in a divisor theory for curves.  But the noncommutative equivalent is mainly applied to finite dimensional skewfields.  Recently however, new types of algebras have become popul...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Marubayashi, Hidetoshi (Συγγραφέας), Van Oystaeyen, Fred (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Σειρά:Lecture Notes in Mathematics, 2059
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03136nam a22005415i 4500
001 978-3-642-31152-9
003 DE-He213
005 20151123152738.0
007 cr nn 008mamaa
008 120821s2012 gw | s |||| 0|eng d
020 |a 9783642311529  |9 978-3-642-31152-9 
024 7 |a 10.1007/978-3-642-31152-9  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Marubayashi, Hidetoshi.  |e author. 
245 1 0 |a Prime Divisors and Noncommutative Valuation Theory  |h [electronic resource] /  |c by Hidetoshi Marubayashi, Fred Van Oystaeyen. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a IX, 218 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2059 
505 0 |a 1. General Theory of Primes -- 2. Maximal Orders and Primes -- 3. Extensions of Valuations to some Quantized Algebras. 
520 |a Classical valuation theory has applications in number theory and class field theory as well as in algebraic geometry, e.g. in a divisor theory for curves.  But the noncommutative equivalent is mainly applied to finite dimensional skewfields.  Recently however, new types of algebras have become popular in modern algebra; Weyl algebras, deformed and quantized algebras, quantum groups and Hopf algebras, etc. The advantage of valuation theory in the commutative case is that it allows effective calculations, bringing the arithmetical properties of the ground field into the picture.  This arithmetical nature is also present in the theory of maximal orders in central simple algebras.  Firstly, we aim at uniting maximal orders, valuation rings, Dubrovin valuations, etc. in a common theory, the theory of primes of algebras.  Secondly, we establish possible applications of the noncommutative arithmetics to interesting classes of algebras, including the extension of central valuations to nice classes of quantized algebras, the development of a theory of Hopf valuations on Hopf algebras and quantum groups, noncommutative valuations on the Weyl field and interesting rings of invariants and valuations of Gauss extensions. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Algebraic geometry. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Geometry. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Associative Rings and Algebras. 
700 1 |a Van Oystaeyen, Fred.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642311512 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2059 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-31152-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)