Data Matching Concepts and Techniques for Record Linkage, Entity Resolution, and Duplicate Detection /

Data matching (also known as record or data linkage, entity resolution, object identification, or field matching) is the task of identifying, matching and merging records that correspond to the same entities from several databases or even within one database. Based on research in various domains inc...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Christen, Peter (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Σειρά:Data-Centric Systems and Applications
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04489nam a22005415i 4500
001 978-3-642-31164-2
003 DE-He213
005 20151204171021.0
007 cr nn 008mamaa
008 120704s2012 gw | s |||| 0|eng d
020 |a 9783642311642  |9 978-3-642-31164-2 
024 7 |a 10.1007/978-3-642-31164-2  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D3 
072 7 |a UN  |2 bicssc 
072 7 |a UMT  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
082 0 4 |a 005.74  |2 23 
100 1 |a Christen, Peter.  |e author. 
245 1 0 |a Data Matching  |h [electronic resource] :  |b Concepts and Techniques for Record Linkage, Entity Resolution, and Duplicate Detection /  |c by Peter Christen. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a XX, 272 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Data-Centric Systems and Applications 
505 0 |a Part I Overview -- Introduction -- The Data Matching Process -- Part II Steps of the Data Matching Process -- Data Pre-Processing -- Indexing -- Field and Record Comparison -- Classification -- Evaluation of Matching Quality and Complexity -- Part III Further Topics -- Privacy Aspects of Data Matching -- Further Topics and Research Directions -- Data Matching Systems. 
520 |a Data matching (also known as record or data linkage, entity resolution, object identification, or field matching) is the task of identifying, matching and merging records that correspond to the same entities from several databases or even within one database. Based on research in various domains including applied statistics, health informatics, data mining, machine learning, artificial intelligence, database management, and digital libraries, significant advances have been achieved over the last decade in all aspects of the data matching process, especially on how to improve the accuracy of data matching, and its scalability to large databases. Peter Christen’s book is divided into three parts: Part I, “Overview”, introduces the subject by presenting several sample applications and their special challenges, as well as a general overview of a generic data matching process. Part II, “Steps of the Data Matching Process”, then details its main steps like pre-processing, indexing, field and record comparison, classification, and quality evaluation. Lastly, part III, “Further Topics”, deals with specific aspects like privacy, real-time matching, or matching unstructured data. Finally, it briefly describes the main features of many research and open source systems available today. By providing the reader with a broad range of data matching concepts and techniques and touching on all aspects of the data matching process, this book helps researchers as well as students specializing in data quality or data matching aspects to familiarize themselves with recent research advances and to identify open research challenges in the area of data matching. To this end, each chapter of the book includes a final section that provides pointers to further background and research material. Practitioners will better understand the current state of the art in data matching as well as the internal workings and limitations of current systems. Especially, they will learn that it is often not feasible to simply implement an existing off-the-shelf data matching system without substantial adaption and customization. Such practical considerations are discussed for each of the major steps in the data matching process. 
650 0 |a Computer science. 
650 0 |a Database management. 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Database Management. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Pattern Recognition. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642311635 
830 0 |a Data-Centric Systems and Applications 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-31164-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)