Computational Contact Mechanics Geometrically Exact Theory for Arbitrary Shaped Bodies /

This book contains a systematical analysis of geometrical situations  leading to  contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface.  Each contact pair  is inherited with a special coordinate system based on its geometrical properties such as...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Konyukhov, Alexander (Συγγραφέας), Schweizerhof, Karl (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Lecture Notes in Applied and Computational Mechanics, 67
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04156nam a22005175i 4500
001 978-3-642-31531-2
003 DE-He213
005 20151125141700.0
007 cr nn 008mamaa
008 120814s2013 gw | s |||| 0|eng d
020 |a 9783642315312  |9 978-3-642-31531-2 
024 7 |a 10.1007/978-3-642-31531-2  |2 doi 
040 |d GrThAP 
050 4 |a TA405-409.3 
050 4 |a QA808.2 
072 7 |a TG  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a TEC021000  |2 bisacsh 
082 0 4 |a 620.1  |2 23 
100 1 |a Konyukhov, Alexander.  |e author. 
245 1 0 |a Computational Contact Mechanics  |h [electronic resource] :  |b Geometrically Exact Theory for Arbitrary Shaped Bodies /  |c by Alexander Konyukhov, Karl Schweizerhof. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XXII, 446 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Applied and Computational Mechanics,  |x 1613-7736 ;  |v 67 
505 0 |a Differential Geometry of Surfaces and Curves -- Closest Point Projection Procedure and Corresponding Curvilinear Coordinate System -- Geometry and Kinematics of Contact -- Weak Formulation of Contact Conditions -- Contact Constraints and Constitutive Equations for Contact Tractions -- Linearization of the Weak Forms – Tangent Matrices in a Covariant Form -- Surface-To-Surface Contact – Various Aspects for Implementations -- Special Case of Implementation – Reduction into 2D Case -- Implementation of Contact Algorithms with High Order FE -- Anisotropic Adhesion-Friction Models – Implementation -- Experimental Validations of the Coupled Anistropi -- Various Aspects of Implementation of the Curve-To-Curve Contact Model -- 3D-Generalization of the Euler-Eytelwein Formula Considering Pitch. 
520 |a This book contains a systematical analysis of geometrical situations  leading to  contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface.  Each contact pair  is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system.  The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a  certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others  are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are  then ready-for-implementation numerical algorithms within the finite element method including any arbitrary discretization techniques such as high order and isogeometric finite elements, which are most convenient for the considered geometrical situation. The book proposes a consistent study of geometry and kinematics, variational formulations, constitutive relations for surfaces and discretization techniques for all considered geometrical pairs and  contains the associated  numerical analysis as well as some new analytical results in contact mechanics. 
650 0 |a Engineering. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
650 0 |a Continuum mechanics. 
650 1 4 |a Engineering. 
650 2 4 |a Continuum Mechanics and Mechanics of Materials. 
650 2 4 |a Theoretical and Applied Mechanics. 
650 2 4 |a Mechanics. 
700 1 |a Schweizerhof, Karl.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642315305 
830 0 |a Lecture Notes in Applied and Computational Mechanics,  |x 1613-7736 ;  |v 67 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-31531-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)