Factoring Ideals in Integral Domains

This volume provides a wide-ranging survey of, and many new results on, various important types of ideal factorization actively investigated by several authors in recent years.  Examples of domains studied include (1) those with weak factorization, in which each nonzero, nondivisorial ideal can be f...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Fontana, Marco (Συγγραφέας), Houston, Evan (Συγγραφέας), Lucas, Thomas (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Lecture Notes of the Unione Matematica Italiana, 14
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02490nam a22005295i 4500
001 978-3-642-31712-5
003 DE-He213
005 20151204181556.0
007 cr nn 008mamaa
008 120914s2013 gw | s |||| 0|eng d
020 |a 9783642317125  |9 978-3-642-31712-5 
024 7 |a 10.1007/978-3-642-31712-5  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Fontana, Marco.  |e author. 
245 1 0 |a Factoring Ideals in Integral Domains  |h [electronic resource] /  |c by Marco Fontana, Evan Houston, Thomas Lucas. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a VIII, 164 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9113 ;  |v 14 
520 |a This volume provides a wide-ranging survey of, and many new results on, various important types of ideal factorization actively investigated by several authors in recent years.  Examples of domains studied include (1) those with weak factorization, in which each nonzero, nondivisorial ideal can be factored as the product of its divisorial closure and a product of maximal ideals and (2) those with pseudo-Dedekind factorization, in which each nonzero, noninvertible ideal can be factored as the product of an invertible ideal with a product of pairwise comaximal prime ideals.  Prüfer domains play a central role in our study, but many non-Prüfer examples are considered as well. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Algebraic geometry. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Number Theory. 
700 1 |a Houston, Evan.  |e author. 
700 1 |a Lucas, Thomas.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642317118 
830 0 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9113 ;  |v 14 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-31712-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)