Turing Computability Theory and Applications /

Turing's famous 1936 paper introduced a formal definition of a computing machine, a Turing machine. This model led to both the development of actual computers and to computability theory, the study of what machines can and cannot compute. This book presents classical computability theory from T...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Soare, Robert I. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2016.
Σειρά:Theory and Applications of Computability, In cooperation with the association Computability in Europe,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04443nam a22005055i 4500
001 978-3-642-31933-4
003 DE-He213
005 20160620144519.0
007 cr nn 008mamaa
008 160620s2016 gw | s |||| 0|eng d
020 |a 9783642319334  |9 978-3-642-31933-4 
024 7 |a 10.1007/978-3-642-31933-4  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UY  |2 bicssc 
072 7 |a UYA  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a COM031000  |2 bisacsh 
082 0 4 |a 004.0151  |2 23 
100 1 |a Soare, Robert I.  |e author. 
245 1 0 |a Turing Computability  |h [electronic resource] :  |b Theory and Applications /  |c by Robert I. Soare. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2016. 
300 |a XXXVI, 263 p. 4 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Theory and Applications of Computability, In cooperation with the association Computability in Europe,  |x 2190-619X 
505 0 |a Part I Foundations of Computability -- Chap. 1 Defining Computability -- Chap. 2 Computably Enumerable Sets -- Chap. 3 Turing Reducibility -- Chap. 4 The Arithmetical Hierarchy -- Chap. 5 Classifying C.E. Sets -- Chap. 6 Oracle Constructions and Forcing -- Chap. 7 The Finite Injury Method -- Part II Trees and Π01 Classes -- Chap. 8 Open and Closed Classes -- Chap. 9 Basis Theorems -- Chap. 10 Peano Arithmetic and Π01-Classes -- Chap. 11 Randomness and Π01-Classes -- Part III Minimal Degrees -- Chap. 12 Minimal Degrees Below Øʹʹ -- Chap. 13 Minimal Degrees Below Øʹ -- Part IV Games in Computability Theory -- Chap. 14 Banach-Mazur Games -- Chap. 15 Gale-Stewart Games -- Chap. 16 More Lachlan Games -- Part V History of Computability -- Chap. 17 History of Computability -- References -- Index. 
520 |a Turing's famous 1936 paper introduced a formal definition of a computing machine, a Turing machine. This model led to both the development of actual computers and to computability theory, the study of what machines can and cannot compute. This book presents classical computability theory from Turing and Post to current results and methods, and their use in studying the information content of algebraic structures, models, and their relation to Peano arithmetic. The author presents the subject as an art to be practiced, and an art in the aesthetic sense of inherent beauty which all mathematicians recognize in their subject. Part I gives a thorough development of the foundations of computability, from the definition of Turing machines up to finite injury priority arguments. Key topics include relative computability, and computably enumerable sets, those which can be effectively listed but not necessarily effectively decided, such as the theorems of Peano arithmetic. Part II includes the study of computably open and closed sets of reals and basis and nonbasis theorems for effectively closed sets. Part III covers minimal Turing degrees. Part IV is an introduction to games and their use in proving theorems. Finally, Part V offers a short history of computability theory. The author is a leading authority on the topic and he has taught the subject using the book content over decades, honing it according to experience and feedback from students, lecturers, and researchers around the world. Most chapters include exercises, and the material is carefully structured according to importance and difficulty. The book is suitable for advanced undergraduate and graduate students in computer science and mathematics and researchers engaged with computability and mathematical logic. 
650 0 |a Computer science. 
650 0 |a Computers. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Mathematical logic. 
650 1 4 |a Computer Science. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Mathematics of Computing. 
650 2 4 |a Mathematical Logic and Foundations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642319327 
830 0 |a Theory and Applications of Computability, In cooperation with the association Computability in Europe,  |x 2190-619X 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-31933-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)